-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnavigation.py
338 lines (270 loc) · 14.3 KB
/
navigation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import transforms
from torchvision import models
from loconet import LocoNet
from sklearn.metrics import accuracy_score
from PIL import Image
import numpy as np
import os
import time
from tqdm import tqdm
from vizdoom import *
from dataset import RecordedAirSimDataLoader
from dataset import OnlineVizDoomDataLoader
import dataset
import constants
class Navigation:
def __init__(self, checkpoint=None, use_cuda=True):
kwargs = {'num_classes': constants.LOCO_NUM_CLASSES}
self.model = models.resnet18(**kwargs) # (num_classes=constants.LOCO_NUM_CLASSES)
self.model.conv1 = nn.Conv2d(6, 64, kernel_size=7, stride=2, padding=3, bias=False) # to accept 9 channels instead
self.target_model = models.resnet18(**kwargs) # (num_classes=constants.LOCO_NUM_CLASSES)
self.target_model.conv1 = nn.Conv2d(6, 64, kernel_size=7, stride=2, padding=3, bias=False) # to accept 9 channels instead
self.normalize = transforms.Normalize(
#mean=[121.50361069 / 127., 122.37611083 / 127., 121.25987563 / 127.],
mean = [0.5, 0.5, 0.5],
std = [0.5, 0.5, 0.5]
)
self.preprocess = transforms.Compose([
transforms.Resize(constants.TRAINING_LOCO_IMAGE_SCALE),
transforms.CenterCrop(constants.LOCO_IMAGE_SIZE),
transforms.ToTensor(),
self.normalize
])
self.np_preprocess = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(constants.TRAINING_LOCO_IMAGE_SCALE),
transforms.CenterCrop(constants.LOCO_IMAGE_SIZE),
transforms.ToTensor(),
self.normalize
])
if (checkpoint is not None):
self.load_weights(checkpoint)
self.use_cuda = use_cuda
if (use_cuda):
self.cuda()
def load_weights(self, checkpoint_path):
checkpoint = torch.load(checkpoint_path)
self.model.load_state_dict(checkpoint['state_dict'])
def cuda(self):
self.model.cuda()
self.target_model.cuda()
def forward(self, current_state, closest_state, future_state):
if (isinstance(current_state, (np.ndarray, np.generic))):
current_tensor = self.np_preprocess(current_state)
# closest_tensor = self.np_preprocess(closest_state)
future_tensor = self.np_preprocess(future_state)
else:
current_tensor = self.preprocess(current_state)
# closest_tensor = self.preprocess(closest_state)
future_tensor = self.preprocess(future_state)
# packed_array = np.concatenate([current_tensor, closest_tensor, future_tensor], axis=0)
packed_array = np.concatenate([current_tensor, future_tensor], axis=0)
packed_tensor = torch.from_numpy(packed_array)
packed_tensor.unsqueeze_(0)
if self.use_cuda:
packed_tensor = packed_tensor.cuda()
packed_variable = Variable(packed_tensor)
output = self.model(packed_variable)
return F.softmax(output)
"""
def train_dqn(self, env, checkpoint_path, number_episodes):
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(list(filter(lambda p: p.requires_grad, self.model.parameters())), lr=constants.TRAINING_LOCO_LR, momentum=constants.TRAINING_LOCO_MOMENTUM)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=constants.TRAINING_LOCO_LR_SCHEDULER_SIZE, gamma=constants.TRAINING_LOCO_LR_SCHEDULER_GAMMA)
since = time.time()
best_model_wts = self.model.state_dict()
best_acc = 0.0
self.model.train(True) # Set model to training mode
for epoch in range(number_episodes):
print('Epoch {}/{}'.format(epoch, number_episodes - 1))
print('-' * 10)
env.teach(constants.DQN_LOCO_TEACH_LEN)
observation = None
# exp_lr_scheduler.step()
done = False
while done == False:
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
self.model.load_state_dict(best_model_wts)
return self.model
"""
def train(self, datapath, checkpoint_path, train_iterations, online_training=False):
if (online_training):
return self.train_online(constants.VIZDOOM_DEFAULT_WAD, checkpoint_path, train_iterations)
else:
return self.train_on_dataset(datapath, checkpoint_path, train_iterations)
def train_on_dataset(self, datapath, checkpoint_path, train_iterations):
# weights = [1.0, 1.5, 1.5, 0.5, 0.5, 0.5]
# class_weights = torch.FloatTensor(weights).cuda()
# criterion = nn.CrossEntropyLoss(weight=class_weights)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(list(filter(lambda p: p.requires_grad, self.model.parameters())), lr=constants.TRAINING_LOCO_LR, momentum=constants.TRAINING_LOCO_MOMENTUM)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=constants.TRAINING_LOCO_LR_SCHEDULER_SIZE, gamma=constants.TRAINING_LOCO_LR_SCHEDULER_GAMMA)
kwargs = {'num_workers': 8, 'pin_memory': True} if torch.cuda.is_available() else {}
train_loader = torch.utils.data.DataLoader(RecordedAirSimDataLoader(datapath, datatype=dataset.TYPE_LOCOMOTION, transform=self.preprocess), batch_size=constants.TRAINING_LOCO_BATCH, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(RecordedAirSimDataLoader(datapath, datatype=dataset.TYPE_LOCOMOTION, transform=self.preprocess, validation=True), batch_size=constants.TRAINING_LOCO_BATCH, shuffle=True, **kwargs)
data_loaders = { 'train': train_loader, 'val': val_loader }
since = time.time()
best_model_wts = self.model.state_dict()
best_acc = 0.0
for epoch in range(train_iterations):
print('Epoch {}/{}'.format(epoch, train_iterations - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
exp_lr_scheduler.step()
self.model.train(True) # Set model to training mode
else:
self.model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for data in tqdm(data_loaders[phase]):
# get the inputs
inputs, labels = data
# wrap them in Variable
if self.use_cuda:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = self.model(inputs)
if type(outputs) == tuple:
outputs, _ = outputs
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item()
running_corrects += torch.sum(preds == labels.data)
epoch_loss = (float(running_loss) / float(len(data_loaders[phase].dataset))) * 100.0
epoch_acc = (float(running_corrects) / float(len(data_loaders[phase].dataset))) * 100.0
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = self.model.state_dict()
self.save_model(checkpoint_path, epoch)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
self.model.load_state_dict(best_model_wts)
return self.model
def train_online(self, wad, checkpoint_path, train_iterations):
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(list(filter(lambda p: p.requires_grad, self.model.parameters())), lr=constants.TRAINING_LOCO_LR, momentum=constants.TRAINING_LOCO_MOMENTUM)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=constants.TRAINING_LOCO_LR_SCHEDULER_SIZE, gamma=constants.TRAINING_LOCO_LR_SCHEDULER_GAMMA)
kwargs = {'num_workers': 8, 'pin_memory': False} if torch.cuda.is_available() else {}
train_dataset = OnlineVizDoomDataLoader(wad, locomotion=True, transform=self.np_preprocess)
val_dataset = OnlineVizDoomDataLoader(wad, locomotion=True, transform=self.np_preprocess)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=constants.TRAINING_LOCO_BATCH, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=constants.TRAINING_LOCO_BATCH, shuffle=True, **kwargs)
data_loaders = { 'train': train_loader, 'val': val_loader }
since = time.time()
best_model_wts = self.model.state_dict()
best_acc = 0.0
for epoch in range(train_iterations):
train_dataset.collect(constants.DATA_COLLECTION_ONLINE_TRAINING_ROUNG_LENGTH)
val_dataset.collect(constants.DATA_COLLECTION_ONLINE_VALIDATING_ROUNG_LENGTH)
print('Epoch {}/{}'.format(epoch, train_iterations - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
exp_lr_scheduler.step()
self.model.train(True) # Set model to training mode
else:
self.model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for data in tqdm(data_loaders[phase]):
# get the inputs
inputs, labels = data
# wrap them in Variable
if self.use_cuda:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = self.model(inputs)
if type(outputs) == tuple:
outputs, _ = outputs
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item()
running_corrects += torch.sum(preds == labels.data)
epoch_loss = (float(running_loss) / float(len(data_loaders[phase].dataset))) * 100.0
epoch_acc = (float(running_corrects) / float(len(data_loaders[phase].dataset))) * 100.0
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = self.model.state_dict()
self.save_model(checkpoint_path, epoch)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
self.model.load_state_dict(best_model_wts)
return self.model
def save_model(self, checkpoint_path, epoch):
print ("Saving a new checkpoint on epoch {}".format(epoch+1))
state = {
'epoch': epoch + 1,
'state_dict': self.model.state_dict(),
}
torch.save(state, os.path.join(checkpoint_path, "nav_{}_checkpoint_{}.pth".format(constants.LOCO_NUM_CLASSES, epoch)))
def eval(self, datapath):
kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {}
data_loader = torch.utils.data.DataLoader(RecordedAirSimDataLoader(datapath, datatype=dataset.TYPE_LOCOMOTION, transform=self.preprocess, validation=True), batch_size=constants.TRAINING_LOCO_BATCH, shuffle=True, **kwargs)
running_corrects = 0
for data in tqdm(data_loader):
inputs, labels = data
# wrap them in Variable
if self.use_cuda:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
outputs = self.model(inputs)
if type(outputs) == tuple:
outputs, _ = outputs
_, preds = torch.max(outputs.data, 1)
running_corrects += torch.sum(preds == labels.data)
epoch_acc = (float(running_corrects) / float(len(data_loader.dataset))) * 100.0
print("Accuracy {} ".format(epoch_acc))
def test(self, current_image_path, future_image_path):
current_image = Image.open(current_image_path).convert('RGB')
future_image = Image.open(future_image_path).convert('RGB')
self.model.eval()
outputs = self.forward(current_image, None, future_image)
print (outputs)