-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathgtad_postprocess.py
179 lines (156 loc) · 6.14 KB
/
gtad_postprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import sys
import numpy as np
import pandas as pd
import json
import os
from joblib import Parallel, delayed
from gtad_lib import opts
thumos_class = {
7 : 'BaseballPitch',
9 : 'BasketballDunk',
12: 'Billiards',
21: 'CleanAndJerk',
22: 'CliffDiving',
23: 'CricketBowling',
24: 'CricketShot',
26: 'Diving',
31: 'FrisbeeCatch',
33: 'GolfSwing',
36: 'HammerThrow',
40: 'HighJump',
45: 'JavelinThrow',
51: 'LongJump',
68: 'PoleVault',
79: 'Shotput',
85: 'SoccerPenalty',
92: 'TennisSwing',
93: 'ThrowDiscus',
97: 'VolleyballSpiking',
}
def IOU(s1, e1, s2, e2):
if (s2 > e1) or (s1 > e2):
return 0
Aor = max(e1, e2) - min(s1, s2)
Aand = min(e1, e2) - max(s1, s2)
return float(Aand) / Aor
def Soft_NMS(df, nms_threshold=1e-5, num_prop=200):
'''
From BSN code
:param df:
:param nms_threshold:
:return:
'''
df = df.sort_values(by="score", ascending=False)
tstart = list(df.xmin.values[:])
tend = list(df.xmax.values[:])
tscore = list(df.score.values[:])
rstart = []
rend = []
rscore = []
# frost: I use a trick here, remove the detection XDD
# which is longer than 300
for idx in range(0, len(tscore)):
if tend[idx] - tstart[idx] >= 300:
tscore[idx] = 0
while len(tscore) > 1 and len(rscore) < num_prop and max(tscore)>0:
max_index = tscore.index(max(tscore))
for idx in range(0, len(tscore)):
if idx != max_index:
tmp_iou = IOU(tstart[max_index], tend[max_index], tstart[idx], tend[idx])
if tmp_iou > 0:
tscore[idx] = tscore[idx] * np.exp(-np.square(tmp_iou) / nms_threshold)
rstart.append(tstart[max_index])
rend.append(tend[max_index])
rscore.append(tscore[max_index])
tstart.pop(max_index)
tend.pop(max_index)
tscore.pop(max_index)
newDf = pd.DataFrame()
newDf['score'] = rscore
newDf['xmin'] = rstart
newDf['xmax'] = rend
return newDf
def _gen_detection_video(video_name, video_cls, thu_label_id, opt, num_prop=200, topk = 2):
files = [opt['output']+"/results/" + f for f in os.listdir(opt['output']+"/results/") if
video_name in f]
if len(files) == 0:
# raise FileNotFoundError('Missing result for video {}'.format(video_name))
print('Missing result for video {}'.format(video_name))
else:
# print('Post processing video {}'.format(video_name))
pass
dfs = [] # merge pieces of video
for snippet_file in files:
snippet_df = pd.read_csv(snippet_file)
snippet_df['score'] = snippet_df.clr_score.values[:] * snippet_df.reg_socre.values[:]
snippet_df = Soft_NMS(snippet_df, nms_threshold=opt['nms_thr'])
dfs.append(snippet_df)
df = pd.concat(dfs)
if len(df) > 1:
df = Soft_NMS(df, nms_threshold=opt['nms_thr'])
df = df.sort_values(by="score", ascending=False)
# sort video classification
video_cls_rank = sorted((e, i) for i, e in enumerate(video_cls))
unet_classes = [thu_label_id[video_cls_rank[-k-1][1]] + 1 for k in range(topk)]
unet_scores = [video_cls_rank[-k-1][0] for k in range(topk)]
fps = result[video_name]['fps']
num_frames = result[video_name]['num_frames']
proposal_list = []
for j in range(min(num_prop, len(df))):
for k in range(topk):
tmp_proposal = {}
tmp_proposal["label"] = thumos_class[int(unet_classes[k])]
tmp_proposal["score"] = float(round(df.score.values[j] * unet_scores[k], 6))
tmp_proposal["segment"] = [float(round(max(0, df.xmin.values[j]) / fps, 1)),
float(round(min(num_frames, df.xmax.values[j]) / fps, 1))]
proposal_list.append(tmp_proposal)
return {video_name:proposal_list}
def gen_detection_multicore(opt):
# get video list
thumos_test_anno = pd.read_csv("./data/thumos_annotations/test_Annotation.csv")
video_list = thumos_test_anno.video.unique()
thu_label_id = np.sort(thumos_test_anno.type_idx.unique())[1:] - 1 # get thumos class id
thu_video_id = np.array([int(i[-4:]) - 1 for i in video_list]) # -1 is to match python index
# load video level classification
cls_data = np.load("./data/uNet_test.npy")
cls_data = cls_data[thu_video_id,:][:, thu_label_id] # order by video list, output 213x20
# detection_result
thumos_gt = pd.read_csv("./data/thumos_annotations/thumos14_test_groundtruth.csv")
global result
result = {
video:
{
'fps': thumos_gt.loc[thumos_gt['video-name'] == video]['frame-rate'].values[0],
'num_frames': thumos_gt.loc[thumos_gt['video-name'] == video]['video-frames'].values[0]
}
for video in video_list
}
parallel = Parallel(n_jobs=15, prefer="processes")
detection = parallel(delayed(_gen_detection_video)(video_name, video_cls, thu_label_id, opt)
for video_name, video_cls in zip(video_list, cls_data ))
detection_dict = {}
[detection_dict.update(d) for d in detection]
output_dict = {"version": "THUMOS14", "results": detection_dict, "external_data": {}}
with open(opt["output"] + '/detection_result.json', "w") as out:
json.dump(output_dict, out)
if __name__ == '__main__':
opt = opts.parse_opt()
opt = vars(opt)
opt["output"] = opt["output"]
if not os.path.exists(opt["output"]):
os.makedirs(opt["output"])
opt_file = open(opt["output"] + "/opts.json", "w")
json.dump(opt, opt_file)
opt_file.close()
print("Detection post processing start")
gen_detection_multicore(opt)
print("Detection Post processing finished")
from evaluation.eval_detection import ANETdetection
tious = [0.3, 0.4, 0.5, 0.6, 0.7]
anet_detection = ANETdetection(
ground_truth_filename='./evaluation/thumos_gt.json',
prediction_filename=opt["output"] + '/detection_result.json',
subset='test', tiou_thresholds=tious)
mAPs, average_mAP = anet_detection.evaluate()
for (tiou, mAP) in zip(tious, mAPs):
print("mAP at tIoU {} is {}".format(tiou, mAP))