forked from igul222/improved_wgan_training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gan_language.py
188 lines (155 loc) · 6.79 KB
/
gan_language.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os, sys
sys.path.append(os.getcwd())
import time
import numpy as np
import tensorflow as tf
import language_helpers
import tflib as lib
import tflib.ops.linear
import tflib.ops.conv1d
import tflib.plot
# Download Google Billion Word at http://www.statmt.org/lm-benchmark/ and
# fill in the path to the extracted files here!
DATA_DIR = ''
if len(DATA_DIR) == 0:
raise Exception('Please specify path to data directory in gan_language.py!')
BATCH_SIZE = 64 # Batch size
ITERS = 200000 # How many iterations to train for
SEQ_LEN = 32 # Sequence length in characters
DIM = 512 # Model dimensionality. This is fairly slow and overfits, even on
# Billion Word. Consider decreasing for smaller datasets.
CRITIC_ITERS = 10 # How many critic iterations per generator iteration. We
# use 10 for the results in the paper, but 5 should work fine
# as well.
LAMBDA = 10 # Gradient penalty lambda hyperparameter.
MAX_N_EXAMPLES = 10000000 # Max number of data examples to load. If data loading
# is too slow or takes too much RAM, you can decrease
# this (at the expense of having less training data).
lib.print_model_settings(locals().copy())
lines, charmap, inv_charmap = language_helpers.load_dataset(
max_length=SEQ_LEN,
max_n_examples=MAX_N_EXAMPLES,
data_dir=DATA_DIR
)
def softmax(logits):
return tf.reshape(
tf.nn.softmax(
tf.reshape(logits, [-1, len(charmap)])
),
tf.shape(logits)
)
def make_noise(shape):
return tf.random_normal(shape)
def ResBlock(name, inputs):
output = inputs
output = tf.nn.relu(output)
output = lib.ops.conv1d.Conv1D(name+'.1', DIM, DIM, 5, output)
output = tf.nn.relu(output)
output = lib.ops.conv1d.Conv1D(name+'.2', DIM, DIM, 5, output)
return inputs + (0.3*output)
def Generator(n_samples, prev_outputs=None):
output = make_noise(shape=[n_samples, 128])
output = lib.ops.linear.Linear('Generator.Input', 128, SEQ_LEN*DIM, output)
output = tf.reshape(output, [-1, DIM, SEQ_LEN])
output = ResBlock('Generator.1', output)
output = ResBlock('Generator.2', output)
output = ResBlock('Generator.3', output)
output = ResBlock('Generator.4', output)
output = ResBlock('Generator.5', output)
output = lib.ops.conv1d.Conv1D('Generator.Output', DIM, len(charmap), 1, output)
output = tf.transpose(output, [0, 2, 1])
output = softmax(output)
return output
def Discriminator(inputs):
output = tf.transpose(inputs, [0,2,1])
output = lib.ops.conv1d.Conv1D('Discriminator.Input', len(charmap), DIM, 1, output)
output = ResBlock('Discriminator.1', output)
output = ResBlock('Discriminator.2', output)
output = ResBlock('Discriminator.3', output)
output = ResBlock('Discriminator.4', output)
output = ResBlock('Discriminator.5', output)
output = tf.reshape(output, [-1, SEQ_LEN*DIM])
output = lib.ops.linear.Linear('Discriminator.Output', SEQ_LEN*DIM, 1, output)
return output
real_inputs_discrete = tf.placeholder(tf.int32, shape=[BATCH_SIZE, SEQ_LEN])
real_inputs = tf.one_hot(real_inputs_discrete, len(charmap))
fake_inputs = Generator(BATCH_SIZE)
fake_inputs_discrete = tf.argmax(fake_inputs, fake_inputs.get_shape().ndims-1)
disc_real = Discriminator(real_inputs)
disc_fake = Discriminator(fake_inputs)
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real)
gen_cost = -tf.reduce_mean(disc_fake)
# WGAN lipschitz-penalty
alpha = tf.random_uniform(
shape=[BATCH_SIZE,1,1],
minval=0.,
maxval=1.
)
differences = fake_inputs - real_inputs
interpolates = real_inputs + (alpha*differences)
gradients = tf.gradients(Discriminator(interpolates), [interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1,2]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += LAMBDA*gradient_penalty
gen_params = lib.params_with_name('Generator')
disc_params = lib.params_with_name('Discriminator')
gen_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9).minimize(gen_cost, var_list=gen_params)
disc_train_op = tf.train.AdamOptimizer(learning_rate=1e-4, beta1=0.5, beta2=0.9).minimize(disc_cost, var_list=disc_params)
# Dataset iterator
def inf_train_gen():
while True:
np.random.shuffle(lines)
for i in xrange(0, len(lines)-BATCH_SIZE+1, BATCH_SIZE):
yield np.array(
[[charmap[c] for c in l] for l in lines[i:i+BATCH_SIZE]],
dtype='int32'
)
# During training we monitor JS divergence between the true & generated ngram
# distributions for n=1,2,3,4. To get an idea of the optimal values, we
# evaluate these statistics on a held-out set first.
true_char_ngram_lms = [language_helpers.NgramLanguageModel(i+1, lines[10*BATCH_SIZE:], tokenize=False) for i in xrange(4)]
validation_char_ngram_lms = [language_helpers.NgramLanguageModel(i+1, lines[:10*BATCH_SIZE], tokenize=False) for i in xrange(4)]
for i in xrange(4):
print "validation set JSD for n={}: {}".format(i+1, true_char_ngram_lms[i].js_with(validation_char_ngram_lms[i]))
true_char_ngram_lms = [language_helpers.NgramLanguageModel(i+1, lines, tokenize=False) for i in xrange(4)]
with tf.Session() as session:
session.run(tf.initialize_all_variables())
def generate_samples():
samples = session.run(fake_inputs)
samples = np.argmax(samples, axis=2)
decoded_samples = []
for i in xrange(len(samples)):
decoded = []
for j in xrange(len(samples[i])):
decoded.append(inv_charmap[samples[i][j]])
decoded_samples.append(tuple(decoded))
return decoded_samples
gen = inf_train_gen()
for iteration in xrange(ITERS):
start_time = time.time()
# Train generator
if iteration > 0:
_ = session.run(gen_train_op)
# Train critic
for i in xrange(CRITIC_ITERS):
_data = gen.next()
_disc_cost, _ = session.run(
[disc_cost, disc_train_op],
feed_dict={real_inputs_discrete:_data}
)
lib.plot.plot('time', time.time() - start_time)
lib.plot.plot('train disc cost', _disc_cost)
if iteration % 100 == 99:
samples = []
for i in xrange(10):
samples.extend(generate_samples())
for i in xrange(4):
lm = language_helpers.NgramLanguageModel(i+1, samples, tokenize=False)
lib.plot.plot('js{}'.format(i+1), lm.js_with(true_char_ngram_lms[i]))
with open('samples_{}.txt'.format(iteration), 'w') as f:
for s in samples:
s = "".join(s)
f.write(s + "\n")
if iteration % 100 == 99:
lib.plot.flush()
lib.plot.tick()