-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathindex.html
97 lines (82 loc) · 10.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
<!doctype html>
<html>
<head>
<title>Mathematical OpenType Fonts</title>
<meta charset="utf-8"/>
<script type="text/javascript" src="/MathFonts/font-selection.js"></script>
<script>
document.addEventListener("DOMContentLoaded", () => {
let font_data = document.getElementById("font_data");
for (let value in mathfont_list) {
if (value == "Default")
continue;
font_data.insertAdjacentHTML("beforeend",
`<li><a href="${value}/">${mathfont_list[value]}</a></li>`);
}
});
</script>
</head>
<body>
<h1>Mathematical OpenType Fonts</h1>
<p>This <a href="https://github.com/fred-wang/MathFonts">GitHub repository</a> provides various style sheets for mathematical fonts, together with Web fonts for those under an open source license.</p>
<p id="testcase_general">Please select how you want to render this page:</p>
<ul>
<li>Use <select class="mathfont"></select></li>
<li>Only set font for MathML
<input id="CheckBox" type="checkbox" class="mathmlonly"/></li>
</ul>
<p>Alternatively, you can try the
<a href="./mozilla_mathml_test/">Mozilla test</a> or this
<a href="Συνάρτηση_ζήτα_Ρήμαν.html">Greek page using the GFS
NeoHellenic font</a>.</p>
<p>This is a simple paragraph of text with some simple inline expressions
such as
<math><semantics><mrow><msqrt><mn>2</mn></msqrt><mo>+</mo><msub><mi>x</mi><mn>1</mn></msub></mrow><annotation encoding="TeX">\sqrt{2} + x_1</annotation></semantics></math>,
<math><semantics><mfrac><msup><mi>π</mi><mn>8</mn></msup><mn>2</mn></mfrac><annotation encoding="TeX">\frac{\pi^8}{2}</annotation></semantics></math>, <math><semantics><mroot><msup><mi>ℒ</mi><mo>′</mo></msup><mi>n</mi></mroot><annotation encoding="TeX">\sqrt[n]{\mathscr L'}</annotation></semantics></math> or
<math><semantics><mrow><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mover><mi>f</mi><mo stretchy="false">^</mo></mover><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow><annotation encoding="TeX">\sum_{i=1}^n \hat{f}(i)</annotation></semantics></math>.
Some fonts support old style numbers <span class="oldstylenumbers">0123456789</span> (vs 0123456789) or calligraphic
letters <math><semantics><mi class="calligraphic">𝒜</mi><annotation encoding="TeX">\mathcal{A}</annotation></semantics></math> (vs <math><semantics><mi>𝒜</mi><annotation encoding="TeX">\mathscr{A}</annotation></semantics></math>).</p>
<p>Here are some display expressions:
<math display="block"><semantics><mrow><mover><mi>𝐄</mi><mo stretchy="false">⇀</mo></mover><mo>=</mo><mrow><mo>{</mo><mtable rowspacing="0.5ex" columnalign="left left" displaystyle="false"><mtr><mtd><mn>0</mn><mover><mi>𝐤</mi><mo stretchy="false">^</mo></mover><mo>,</mo></mtd><mtd><mi>z</mi><mo>></mo><mi>d</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mo>−</mo><mfrac><mi>σ</mi><mrow><mn>2</mn><msub><mi>ε</mi><mn>0</mn></msub></mrow></mfrac><mover><mi>𝐤</mi><mo stretchy="false">^</mo></mover><mo>,</mo></mtd><mtd><mi>d</mi><mo>/</mo><mn>2</mn><mo>></mo><mi>z</mi><mo>></mo><mo>−</mo><mi>d</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd><mn>0</mn><mover><mi>𝐤</mi><mo stretchy="false">^</mo></mover><mo>,</mo></mtd><mtd><mi>z</mi><mo><</mo><mo>−</mo><mi>d</mi><mo>/</mo><mn>2</mn></mtd></mtr><mtr><mtd></mtd></mtr></mtable><undefined></undefined></mrow></mrow><annotation encoding="TeX">\vec{\mathbf{E}} =
\left\{
\begin{array}{l l}
0 \hat{\mathbf{k}}, & z > d/2 \\
-\frac{σ}{2ε_0} \hat{\mathbf{k}}, & d/2 > z > -d / 2 \\
0 \hat{\mathbf{k}}, & z < -d/2 \\
\end{array}
\right.</annotation></semantics></math>
<math display="block"><semantics><mrow><msubsup><mo>∫</mo><mrow><mo>−</mo><mn>∞</mn></mrow><mrow><mo>+</mo><mn>∞</mn></mrow></msubsup><mfrac><mrow><mn>16</mn><mo lspace="0em" rspace="0em">sin</mo><mo stretchy="false">(</mo><mn>2</mn><mi>x</mi><mo>+</mo><mi>π</mi><mo stretchy="false">)</mo></mrow><mrow><mn>5</mn><mo stretchy="false">(</mo><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>x</mi><mo>+</mo><mn>5</mn><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow></mfrac><mi>d</mi><mi>x</mi><mo>=</mo><mfrac><mrow><mi>π</mi><mo lspace="0em" rspace="0em">sin</mo><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><msup><mi>e</mi><mn>4</mn></msup></mfrac></mrow><annotation encoding="TeX">\int_{-\infty}^{+\infty}\frac{16\sin(2x+\pi)}{5(x^{2}+2x+5)^{2}}dx=\frac{\pi
\sin(2)}{e^{4}}</annotation></semantics></math>
followed by inline expressions like <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mroot><mfrac><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi></mrow><mrow><msubsup><mi>α</mi><mn>2</mn><mn>1</mn></msubsup><mo>−</mo><msub><mi>β</mi><mn>0</mn></msub><mo>−</mo><mfrac><msqrt><mi>ζ</mi></msqrt><mn>3</mn></mfrac></mrow></mfrac><mi>p</mi></mroot><annotation encoding="TeX">\sqrt[p]{\frac{x+y+z}{\alpha^1_2 - \beta_0 - \frac{\sqrt{\zeta}}3}}</annotation></semantics></math> or <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi>𝔤</mi><mi>𝔩</mi></mrow><mo stretchy="false">(</mo><mi>ℝ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="TeX">\mathfrak{gl}(\mathbb{R})</annotation></semantics></math>. More display expressions:
<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mtable columnalign="right left right left right left right left right left" columnspacing="0em" displaystyle="true"><mtr><mtd><mi>V</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></mtd><mtd><mo>=</mo><msubsup><mo>∫</mo><mrow><mi>φ</mi><mo>=</mo><mn>0</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></msubsup><msubsup><mo>∫</mo><mrow><mi>θ</mi><mo>=</mo><mn>0</mn></mrow><mi>π</mi></msubsup><msubsup><mo>∫</mo><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><mi>R</mi></msubsup><msup><mi>r</mi><mn>2</mn></msup><mo lspace="0em" rspace="0em">sin</mo><mo stretchy="false">(</mo><mi>θ</mi><mo stretchy="false">)</mo><mi>d</mi><mi>r</mi><mi>d</mi><mi>θ</mi><mi>d</mi><mi>φ</mi></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mrow><mo>(</mo><mrow><msubsup><mo>∫</mo><mrow><mi>φ</mi><mo>=</mo><mn>0</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></msubsup><mi>d</mi><mi>φ</mi></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><msubsup><mo>∫</mo><mrow><mi>θ</mi><mo>=</mo><mn>0</mn></mrow><mi>π</mi></msubsup><mo lspace="0em" rspace="0em">sin</mo><mo stretchy="false">(</mo><mi>θ</mi><mo stretchy="false">)</mo><mi>d</mi><mi>θ</mi></mrow><mo>)</mo></mrow><mrow><mo>(</mo><mrow><msubsup><mo>∫</mo><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><mi>R</mi></msubsup><msup><mi>r</mi><mn>2</mn></msup><mi>d</mi><mi>r</mi></mrow><mo>)</mo></mrow></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><msubsup><mrow><mo>[</mo><mi>φ</mi><mo>]</mo></mrow><mrow><mi>φ</mi><mo>=</mo><mn>0</mn></mrow><mrow><mn>2</mn><mi>π</mi></mrow></msubsup><msubsup><mrow><mo>[</mo><mrow><mo>−</mo><mo lspace="0em" rspace="0em">cos</mo><mo stretchy="false">(</mo><mi>θ</mi><mo stretchy="false">)</mo></mrow><mo>]</mo></mrow><mrow><mi>θ</mi><mo>=</mo><mn>0</mn></mrow><mi>π</mi></msubsup><msubsup><mrow><mo>[</mo><mfrac><msup><mi>r</mi><mn>3</mn></msup><mn>3</mn></mfrac><mo>]</mo></mrow><mrow><mi>r</mi><mo>=</mo><mn>0</mn></mrow><mi>R</mi></msubsup></mtd></mtr><mtr><mtd></mtd><mtd><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>π</mi><msup><mi>R</mi><mn>3</mn></msup></mtd></mtr></mtable><annotation encoding="TeX">
\begin{aligned}
V(R) &=
\int_{\varphi=0}^{2 \pi}
\int_{\theta=0}^{\pi}
\int_{r=0}^{R}
r^2 \sin(\theta) dr d\theta d\varphi \\ &=
\left( \int_{\varphi=0}^{2 \pi} d\varphi \right)
\left( \int_{\theta=0}^{\pi} \sin(\theta) d\theta \right)
\left( \int_{r=0}^{R} r^2 dr \right) \\ &=
\left[ \varphi \right]_{\varphi=0}^{2 \pi}
\left[ -\cos(\theta) \right]_{\theta=0}^{\pi}
\left[ \frac{r^3}{3} \right]_{r=0}^{R} \\ &=
\frac{4}{3} \pi R^3
\end{aligned}
</annotation></semantics></math>
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo lspace="0em" rspace="0em">det</mo><mo stretchy="false">(</mo><mi>A</mi><mo stretchy="false">)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>σ</mi><mo>∊</mo><msub><mi>S</mi><mi>n</mi></msub></mrow></munder><mi>ϵ</mi><mo stretchy="false">(</mo><mi>σ</mi><mo stretchy="false">)</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msub><mi>a</mi><mrow><mi>i</mi><mo>,</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>i</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="TeX">\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}</annotation></semantics></math>
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>I</mi><mi>n</mi></msub><mo>=</mo><msub><mn>𝟙</mn><mi>n</mi></msub><mo>=</mo><mrow><mo>(</mo><mtable rowspacing="0.5ex" displaystyle="false"><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>…</mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>…</mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>⋱</mo></mtd><mtd></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mo>⋮</mo></mtd><mtd></mtd><mtd></mtd><mtd></mtd><mtd><mo>⋮</mo></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><mo>…</mo></mtd><mtd><mn>0</mn></mtd><mtd><mn>1</mn></mtd></mtr></mtable><mo>)</mo></mrow></mrow><annotation encoding="TeX">I_n = \mathbb{1}_n =
\begin{pmatrix}
1 & 0 & 0 & \dots & 0 \\
0 & 1 & 0 & \dots & 0 \\
0 & 0 & \ddots & & 0 \\
\vdots & & & & \vdots \\
0 & 0 & \dots & 0 & 1
\end{pmatrix}
</annotation></semantics></math>
</p>
<p id="testcase_individual">To go further, you can check available data for each font:</p>
<ul id="font_data">
</ul>
</body>
</html>