-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
478 lines (420 loc) · 20.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from __future__ import print_function
import argparse
from math import log10
import sys
sys.path.append('core')
import shutil
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.multiprocessing as mp
import numpy as np
import cv2
import time
import matplotlib.pyplot as plt
from sepflow import SepFlow
import evaluate
import datasets
from torch.utils.tensorboard import SummaryWriter
from utils.utils import InputPadder, forward_interpolate
try:
from torch.cuda.amp import GradScaler
except:
# dummy GradScaler for PyTorch < 1.6
class GradScaler:
def __init__(self):
pass
def scale(self, loss):
return loss
def unscale_(self, optimizer):
pass
def step(self, optimizer):
optimizer.step()
def update(self):
pass
# Training settings
parser = argparse.ArgumentParser(description='PyTorch SepFlow Example')
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512])
parser.add_argument('--resume', type=str, default='', help="resume from saved model")
parser.add_argument('--weights', type=str, default='', help="weights from saved model")
parser.add_argument('--batchSize', type=int, default=1, help='training batch size')
parser.add_argument('--testBatchSize', type=int, default=1, help='testing batch size')
parser.add_argument('--nEpochs', type=int, default=2048, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.001, help='Learning Rate. Default=0.001')
parser.add_argument('--cuda', type=int, default=1, help='use cuda? Default=True')
parser.add_argument('--threads', type=int, default=1, help='number of threads for data loader to use')
parser.add_argument('--manual_seed', type=int, default=1234, help='random seed to use. Default=123')
parser.add_argument('--shift', type=int, default=0, help='random shift of left image. Default=0')
parser.add_argument('--data_path', type=str, default='/export/work/feihu/flow/SceneFlow/', help="data root")
parser.add_argument('--save_path', type=str, default='./checkpoints/', help="location to save models")
parser.add_argument('--gpu', default='0,1,2,3,4,5,6,7', type=str, help="gpu idxs")
parser.add_argument('--workers', type=int, default=16, help="workers")
parser.add_argument('--world_size', type=int, default=1, help="world_size")
parser.add_argument('--rank', type=int, default=0, help="rank")
parser.add_argument('--dist_backend', type=str, default="nccl", help="dist_backend")
parser.add_argument('--dist_url', type=str, default="tcp://127.0.0.1:6789", help="dist_url")
parser.add_argument('--distributed', type=int, default=0, help="distribute")
parser.add_argument('--sync_bn', type=int, default=0, help="sync bn")
parser.add_argument('--multiprocessing_distributed', type=int, default=0, help="multiprocess")
parser.add_argument('--freeze_bn', type=int, default=0, help="freeze bn")
parser.add_argument('--start_epoch', type=int, default=0, help="start epoch")
parser.add_argument('--stage', type=str, default='chairs', help="training stage: 1) things 2) chairs 3) kitti 4) mixed.")
parser.add_argument('--validation', type=str, nargs='+')
parser.add_argument('--num_steps', type=int, default=100000)
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
parser.add_argument('--iters', type=int, default=12)
parser.add_argument('--wdecay', type=float, default=.00005)
parser.add_argument('--epsilon', type=float, default=1e-8)
parser.add_argument('--clip', type=float, default=1.0)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting')
parser.add_argument('--add_noise', action='store_true')
parser.add_argument('--small', action='store_true', help='use small model')
#parser.add_argument('--smoothl1', action='store_true', help='use smooth l1 loss')
MAX_FLOW = 400
SUM_FREQ = 100
VAL_FREQ = 2500
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, max_flow=MAX_FLOW):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(flow_preds)
flow_loss = 0.0
mag = torch.sum(flow_gt**2, dim=1).sqrt()
valid = (valid >= 0.5) & (mag < max_flow)
weights = [0.1, 0.3, 0.5]
base = weights[2] - gamma ** (n_predictions - 3)
for i in range(n_predictions - 3):
weights.append( base + gamma**(n_predictions - i - 4) )
for i in range(n_predictions):
i_loss = (flow_preds[i] - flow_gt).abs()
flow_loss += weights[i] * (valid[:, None] * i_loss).mean()
epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
loss_value = flow_loss.detach()
rate0 = (epe > 1).float().mean()
rate1 = (epe > 3).float().mean()
error3 = epe.mean()
epe = torch.sum((flow_preds[1] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
error1 = epe.mean()
epe = torch.sum((flow_preds[0] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
error0 = epe.mean()
epe = torch.sum((flow_preds[2] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
error2 = epe.mean()
if args.multiprocessing_distributed:
count = flow_gt.new_tensor([1], dtype=torch.long)
dist.all_reduce(loss_value), dist.all_reduce(error3), dist.all_reduce(error0), dist.all_reduce(error1), dist.all_reduce(error2), dist.all_reduce(count)
dist.all_reduce(rate0), dist.all_reduce(rate1)
n = count.item()
loss_value, error0, error1, error2, error3 = loss_value / n, error0 / n, error1 / n, error2 / n, error3 / n
rate1, rate0 = rate1 / n, rate0 / n
metrics = {
'epe0': error0.item(),
'epe1': error1.item(),
'epe2': error2.item(),
'epe3': error3.item(),
'1px': rate0.item(),
'3px': rate1.item(),
'loss': loss_value.item()
}
return flow_loss, metrics
class Logger:
def __init__(self, model, scheduler):
self.model = model
self.scheduler = scheduler
self.total_steps = 0
self.running_loss = {}
self.writer = None
def _print_training_status(self):
metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())]
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0])
metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data)
# print the training status
print(training_str + metrics_str)
if self.writer is None:
self.writer = SummaryWriter()
for k in self.running_loss:
self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps)
self.running_loss[k] = 0.0
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss:
self.running_loss[key] = 0.0
self.running_loss[key] += metrics[key]
if self.total_steps % SUM_FREQ == SUM_FREQ-1:
self._print_training_status()
self.running_loss = {}
def write_dict(self, results):
if self.writer is None:
self.writer = SummaryWriter()
for key in results:
self.writer.add_scalar(key, results[key], self.total_steps)
def close(self):
self.writer.close()
def find_free_port():
import socket
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# Binding to port 0 will cause the OS to find an available port for us
sock.bind(("", 0))
port = sock.getsockname()[1]
sock.close()
# NOTE: there is still a chance the port could be taken by other processes.
return port
def main():
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
args.gpu = (args.gpu).split(',')
torch.backends.cudnn.benchmark = True
# os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(x) for x in args.gpu.split(','))
#args.distributed = args.world_size > 1 or args.multiprocessing_distributed
if args.manual_seed is not None:
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed(args.manual_seed)
torch.cuda.manual_seed_all(args.manual_seed)
cudnn.benchmark = True
cudnn.deterministic = True
args.ngpus_per_node = len(args.gpu)
if len(args.gpu) == 1:
args.sync_bn = False
args.distributed = False
args.multiprocessing_distributed = False
main_worker(args.gpu, args.ngpus_per_node, args)
else:
args.sync_bn = True
args.distributed = True
args.multiprocessing_distributed = True
port = find_free_port()
args.dist_url = f"tcp://127.0.0.1:{port}"
#print(args)
#quit()
args.world_size = args.ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=args.ngpus_per_node, args=(args.ngpus_per_node, args))
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
modules_ori = [model.cnet, model.fnet, model.update_block, model.guidance]
modules_new = [model.cost_agg1, model.cost_agg2]
params_list = []
for module in modules_ori:
params_list.append(dict(params=module.parameters(), lr=args.lr))
for module in modules_new:
params_list.append(dict(params=module.parameters(), lr=args.lr * 2.5))
#optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
optimizer = optim.AdamW(params_list, lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100,
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
def main_process():
return not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % args.ngpus_per_node == 0)
def main_worker(gpu, ngpus_per_node, argss):
global args
args = argss
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank)
model = SepFlow(args)
optimizer, scheduler = fetch_optimizer(args, model)
if args.sync_bn:
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
if args.distributed:
torch.cuda.set_device(gpu)
args.batchSize = int(args.batchSize / args.ngpus_per_node)
args.testBatchSize = int(args.testBatchSize / args.ngpus_per_node)
args.workers = int((args.workers + args.ngpus_per_node - 1) / args.ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[gpu])
else:
model = torch.nn.DataParallel(model).cuda()
#scheduler = None
logger = Logger(model, scheduler)
if args.weights:
if os.path.isfile(args.weights):
checkpoint = torch.load(args.weights, map_location=lambda storage, loc: storage.cuda())
msg=model.load_state_dict(checkpoint['state_dict'], strict=False)
if main_process():
print("=> loaded checkpoint '{}'".format(args.weights))
print(msg)
sys.stdout.flush()
else:
if main_process():
print("=> no checkpoint found at '{}'".format(args.weights))
if args.resume:
if os.path.isfile(args.resume):
checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage.cuda())
msg=model.load_state_dict(checkpoint['state_dict'], strict=False)
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if main_process():
print("=> resume checkpoint '{}'".format(args.resume))
print(msg)
sys.stdout.flush()
else:
if main_process():
print("=> no checkpoint found at '{}'".format(args.resume))
train_set = datasets.fetch_dataloader(args)
val_set = datasets.KITTI(split='training')
val_set3 = datasets.FlyingChairs(split='validation')
val_set2_2 = datasets.MpiSintel(split='training', dstype='final')
val_set2_1 = datasets.MpiSintel(split='training', dstype='clean')
sys.stdout.flush()
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_set)
val_sampler2_2 = torch.utils.data.distributed.DistributedSampler(val_set2_2)
val_sampler2_1 = torch.utils.data.distributed.DistributedSampler(val_set2_1)
val_sampler3 = torch.utils.data.distributed.DistributedSampler(val_set3)
else:
train_sampler = None
val_sampler = None
val_sampler2_1 = None
val_sampler2_2 = None
val_sampler3 = None
training_data_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batchSize, shuffle=(train_sampler is None), num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
val_data_loader = torch.utils.data.DataLoader(val_set, batch_size=args.testBatchSize, shuffle=False, num_workers=args.workers//2, pin_memory=True, sampler=val_sampler)
val_data_loader2_2 = torch.utils.data.DataLoader(val_set2_2, batch_size=args.testBatchSize, shuffle=False, num_workers=args.workers//2, pin_memory=True, sampler=val_sampler2_2)
val_data_loader2_1 = torch.utils.data.DataLoader(val_set2_1, batch_size=args.testBatchSize, shuffle=False, num_workers=args.workers//2, pin_memory=True, sampler=val_sampler2_1)
val_data_loader3 = torch.utils.data.DataLoader(val_set3, batch_size=args.testBatchSize, shuffle=False, num_workers=args.workers//2, pin_memory=True, sampler=val_sampler3)
error = 100
args.nEpochs = args.num_steps // len(training_data_loader) + 1
for epoch in range(args.start_epoch, args.nEpochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train(training_data_loader, model, optimizer, scheduler, logger, epoch)
if main_process() and epoch > args.nEpochs - 3:
save_checkpoint(args.save_path, epoch,{
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict(),
}, False)
if args.stage == 'chairs':
loss = val(val_data_loader3, model, split='chairs')
elif args.stage == 'sintel' or args.stage == 'things':
loss_tmp = val(val_data_loader2_1, model, split='sintel', iters=32)
loss_tmp = val(val_data_loader2_2, model, split='sintel', iters=32)
loss_tmp = val(val_data_loader, model, split='kitti')
elif args.stage == 'kitti':
loss_tmp = val(val_data_loader, model, split='kitti')
if main_process():
save_checkpoint(args.save_path, args.nEpochs,{
'state_dict': model.state_dict()
}, True)
def train(training_data_loader, model, optimizer, scheduler, logger, epoch):
valid_iteration = 0
model.train()
if args.freeze_bn:
model.module.freeze_bn()
if main_process():
print("Epoch " + str(epoch) + ": freezing bn...")
sys.stdout.flush()
for iteration, batch in enumerate(training_data_loader):
input1, input2, target, valid = Variable(batch[0], requires_grad=True), Variable(batch[1], requires_grad=True), Variable(batch[2], requires_grad=False), Variable(batch[3], requires_grad=False)
input1 = input1.cuda(non_blocking=True)
input2 = input2.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
valid = valid.cuda(non_blocking=True)
if len(valid.shape) > 3:
valid = valid.squeeze(1)
if valid.sum() > 0:
optimizer.zero_grad()
if args.add_noise:
stdv = np.random.uniform(0.0, 5.0)
input1 = (input1 + stdv * torch.randn(*input1.shape).cuda()).clamp(0.0, 255.0)
input2 = (input2 + stdv * torch.randn(*input2.shape).cuda()).clamp(0.0, 255.0)
flow_predictions = model(input1, input2, iters=args.iters)
loss, metrics = sequence_loss(flow_predictions, target, valid)
loss.backward()
optimizer.step()
scheduler.step()
adjust_learning_rate(optimizer, scheduler)
if scheduler.get_last_lr()[0] < 0.0000002:
return
valid_iteration += 1
if main_process():
logger.push(metrics)
# print(metrics)
if valid_iteration % 10000 == 0:
save_checkpoint(args.save_path, epoch,{
'epoch': epoch,
'state_dict': model.state_dict(),
'optimizer' : optimizer.state_dict(),
'scheduler' : scheduler.state_dict(),
}, False)
sys.stdout.flush()
def val(testing_data_loader, model, split='sintel', iters=24):
epoch_error = 0
epoch_error_rate0 = 0
epoch_error_rate1 = 0
valid_iteration = 0
model.eval()
for iteration, batch in enumerate(testing_data_loader):
input1, input2, target, valid = Variable(batch[0],requires_grad=False), Variable(batch[1], requires_grad=False), Variable(batch[2], requires_grad=False), Variable(batch[3], requires_grad=False)
input1 = input1.cuda(non_blocking=True)
input2 = input2.cuda(non_blocking=True)
padder = InputPadder(input1.shape, mode=split)
input1, input2 = padder.pad(input1, input2)
target = target.cuda(non_blocking=True)
valid = valid.cuda(non_blocking=True)
mag = torch.sum(target**2, dim=1, keepdim=False).sqrt()
if len(valid.shape) > 3:
valid = valid.squeeze(1)
valid = (valid >= 0.001) #& (mag < MAX_FLOW)
if valid.sum()>0:
with torch.no_grad():
_, flow = model(input1,input2, iters=iters)
flow = padder.unpad(flow)
epe = torch.sum((flow - target)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
rate0 = (epe > 1).float().mean()
if split == 'kitti':
rate1 = ((epe > 3.0) & ((epe/mag.view(-1)[valid.view(-1)]) > 0.05)).float().mean()
else:
rate1 = (epe > 3.0).float().mean()
error = epe.mean()
valid_iteration += 1
if args.multiprocessing_distributed:
count = target.new_tensor([1], dtype=torch.long)
dist.all_reduce(error)
dist.all_reduce(rate0)
dist.all_reduce(rate1)
dist.all_reduce(count)
n = count.item()
error /= n
rate0 /= n
rate1 /= n
epoch_error += error.item()
epoch_error_rate0 += rate0.item()
epoch_error_rate1 += rate1.item()
if main_process() and (valid_iteration % 1000 == 0):
print("===> Test({}/{}): Error: ({:.4f} {:.4f} {:.4f})".format(iteration, len(testing_data_loader), error.item(), rate0.item(), rate1.item()))
sys.stdout.flush()
if main_process():
print("===> Test: Avg. Error: ({:.4f} {:.4f} {:.4f})".format(epoch_error/valid_iteration, epoch_error_rate0/valid_iteration, epoch_error_rate1/valid_iteration))
return epoch_error/valid_iteration
def save_checkpoint(save_path, epoch,state, is_best):
filename = save_path + "_epoch_{}.pth".format(epoch)
if is_best:
filename = save_path + ".pth"
torch.save(state, filename)
print("Checkpoint saved to {}".format(filename))
def adjust_learning_rate(optimizer, scheduler):
lr = scheduler.get_last_lr()[0]
nums = len(optimizer.param_groups)
for index in range(0, nums-2):
optimizer.param_groups[index]['lr'] = lr
for index in range(nums-2, nums):
optimizer.param_groups[index]['lr'] = lr * 2.5
if __name__ == '__main__':
main()