-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNN.py
348 lines (278 loc) · 12.4 KB
/
NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import numpy as np
np.random.seed(0)
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import warnings
class ActivationFunctions:
def __init__(self):
self.activation_functions_dict = {
'sigmoid': self.sigmoid,
'sigmoid_derivative': self.sigmoid_derivative,
'softmax': self.softmax,
'softmax_derivative': self.softmax_derivative,
'tanh': self.tanh,
'tanh_derivative': self.tanh_derivative,
'relu': self.relu,
'relu_derivative': self.relu_derivative,
'linear': self.linear,
'linear_derivative': self.linear_derivative,
'leaky_relu': self.leaky_relu,
'leaky_relu_derivative': self.leaky_relu_derivative
}
def add_activation_function(self, function_name, function_formula):
"""
# Add a custom activation function to the activations dictionary.
Args:
- function_name (str): The name of the activation function.
- function_formula (formula): The formula of the activation function.
"""
self.activation_functions_dict[function_name] = function_formula
def activation_functions(self, activation, x):
"""
# Activation functions for the model.
Args:
- activation (str): The activation function to use.
- x (np.array): The input data.
Returns:
- np.array: The output data after applying the activation function.
"""
if activation in self.activation_functions_dict:
return self.activation_functions_dict[activation](x)
else:
raise ValueError(f"{activation} is not a valid activation function!!!")
def sigmoid(self, x): return 1 / (1 + np.exp(-x))
def sigmoid_derivative(self, x): return x * (1 - x)
def softmax(self, x): return np.exp(x - np.max(x, axis=0)) / np.sum(np.exp(x - np.max(x, axis=0)) , axis=0)
def softmax_derivative(self, x): return x * (1 - x)
def tanh(self, x): return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))
def tanh_derivative(self, x): return 1 - np.power(x, 2)
def relu(self, x): return np.maximum(0, x)
def relu_derivative(self, x): return np.where(x <= 0, 0, 1)
def linear(self, x): return x
def linear_derivative(self, x): return 1
def leaky_relu(self, x): return np.where(x > 0, x, x * 0.01)
def leaky_relu_derivative(self, x): return np.where(x > 0, 1, 0.01)
class Layers:
"""
# Simple Multi-Layer-Perceptron Model.
Args:
- layers (list): The list of layers to add to the model.
Implementation:
- The model is trained by calling the train_model method and passing the input data.
- The model is used to predict the output by calling the predict_input method.
"""
def __init__(self):
self.layers = []
def add(self, layer):
"""
# Add a layer to the model.
Args:
- layer (NLayer): The layer to add the model.
"""
self.layers.append(layer)
self.losses = []
if len(self.layers) >= 2:
for i in range(len(self.layers)-1):
output_shape = self.layers[i].num_neurons
self.layers[i+1].set_weights(output_shape)
def train_model(self, x, y, loss_type, iterations=1, learning_rate=0.001, batch_size=32):
"""
# Train the model.
Args:
- x (np.array): The input data.
- y (np.array): The output data.
- loss_type (str): The loss type to use for the model.
* 'categorical' for categorical crossentropy loss.
* 'mse' for mean squared error loss.
* 'mae' for mean absolute error loss.
- output_data (np.array): The output data.
"""
self.learning_rate = learning_rate
self.x = x
self.y = y
self.batch_size = batch_size
self.loss_type = loss_type
if self.batch_size >= len(self.x):
# If batch size is greater than or equal to the length of the input data
warnings.warn("Batch size is greater than or equal to the length of the input data!!!")
for iter_ in range(iterations):
print(f"Iteration: {iter_+1}")
indices = np.arange(len(self.x))
np.random.shuffle(indices)
self.x = self.x[indices]
self.y = self.y[indices]
for i in range(0, len(self.x), self.batch_size):
x_batch = self.x[i:i+self.batch_size]
y_batch = self.y[i:i+self.batch_size]
self.output = x_batch
for layer in self.layers[1:]:
self.output = layer.forward(self.output)
loss = np.mean(np.square(y_batch-self.output))
self.losses.append(loss)
self.backpropagation(x_batch, y_batch)
else:
# If batch size is less than the length of the input data
for iter_ in range(iterations):
print(f"Iteration: {iter_+1}")
indices = np.random.permutation(len(self.x))
self.x = self.x[indices]
self.y = self.y[indices]
self.output = self.x
for layer in self.layers[1:]:
self.output = layer.forward(self.output)
loss = np.mean(np.square(self.y-self.output))
self.losses.append(loss)
self.backpropagation(self.x, self.y)
def backpropagation(self, x_batch, y_batch):
"""
# Backpropagation algorithm to update weights.
Args:
- learning_rate (float): The learning rate for updating weights.
"""
# Output Layer
error_output_layer = y_batch - self.output
layer_activation_function = self.layers[-1].get_activation() + '_derivative'
derivative_output_layer = ActivationFunctions().activation_functions(layer_activation_function, self.output)
delta_output_layer = error_output_layer * derivative_output_layer
gradyan_weights_output = self.layers[-2].output.T.dot(delta_output_layer)
self.layers[-1].weights += gradyan_weights_output * self.learning_rate
# If there are at least 1 hidden layer
if len(self.layers) >= 3:
# Hidden Layers
delta_hidden_layer = delta_output_layer
for i in range(len(self.layers)-2, 1, -1):
error_hidden_layer = delta_hidden_layer.dot(self.layers[i+1].weights.T)
layer_activation_function = self.layers[i].get_activation() + '_derivative'
derivative_hidden_layer = ActivationFunctions().activation_functions(layer_activation_function, self.layers[i].output)
delta_hidden_layer = error_hidden_layer * derivative_hidden_layer
gradyan_weights = self.layers[i-1].output.T.dot(delta_hidden_layer)
self.layers[i].weights += gradyan_weights * self.learning_rate
# If there is no hidden layer
else:
delta_hidden_layer = delta_output_layer
# Input Layer
erro_input_layer = delta_hidden_layer.dot(self.layers[2].weights.T)
layer_activation_function = self.layers[1].get_activation() + '_derivative'
derivative_hidden_layer = ActivationFunctions().activation_functions(layer_activation_function, self.layers[1].output)
delta_input_layer = erro_input_layer * derivative_hidden_layer
gradyan_weights_input = x_batch.T.dot(delta_input_layer)
self.layers[1].weights += gradyan_weights_input * self.learning_rate
def evaluate_trained_model(self):
'''
# Evaluate the trained model.
'''
if self.loss_type == 'categorical':
predicted_values = [1 if x > 0.5 else 0 for x in self.output]
true_values = self.y
true_predicts = [1 if x == y else 0 for x, y in zip(predicted_values, true_values)]
accuracy = sum(true_predicts) / len(true_values)
return accuracy, confusion_matrix(true_values, predicted_values)
elif self.loss_type == 'mse':
return np.mean(np.square(self.y-self.output))
elif self.loss_type == 'mae':
return np.mean(np.abs(self.y-self.output))
def show_loss_graph(self):
"""
# Show the loss graph of the model.
"""
plt.figure(figsize=(5, 3), facecolor='#032527')
plt.title('Losses', color='white')
plt.gca().set_facecolor('#032527')
plt.xticks(color='#5ECD5A')
plt.yticks(color='#5ECD5A')
plt.plot(self.losses)
def predict_input(self):
return self.output
class NInput:
"""
# Input Layer.
"""
def __init__(self, input_shape):
self.num_neurons = input_shape
class NLayer:
"""
# Multi-Layer-Perceptron Layer.
Args:
- shapes (tuple): The shape of the input and output of the layer.
- activation (str): The activation function to use.
- use_bias (bool): Whether to use bias in the layer or not, default is True.
Implementation:
- weights are initialized with random values between -1 and 1.and
- bias is initialized with random value between -1 and 1.
"""
def __init__(self, num_neurons, activation='linear', use_bias=True, function_name=None, function_formula=None):
self.num_neurons = num_neurons
self.activation = activation
self.use_bias= use_bias
self.function_name = function_name
self.function_formula = function_formula
self.bias = np.random.uniform(-1, 1)
def set_weights(self, output_shape=None, new_weights=None):
"""
# Set the weights for the layer.
Args:
- output_shape (int): The output shape of the layer.
- new_weights (np.array): The new weights to set for the layer.
Implementation:
- If both output_shape and new_weights are None, then an error is raised.
- If output_shape is not None, then the weights are initialized with random values between -1 and 1.
- If new_weights is not None, then the weights are set to the new_weights
"""
if output_shape is None and new_weights is None:
raise ValueError("Both output_shape and new_weights cannot be None!!!")
elif output_shape is not None:
self.weights = np.random.uniform(-1, 1, size=(output_shape, self.num_neurons))
elif new_weights is not None:
self.weights = new_weights
elif output_shape is not None and new_weights is not None:
raise ValueError("One of output_shape and new_weights must be None!!!")
def get_weights(self):
'''
# Get the weights of the layer.
Returns:
- np.array: The weights of the layer.
'''
return self.weights
def set_activation(self, activation):
"""
# Set the activation function for the layer.
Args:
- activation (str): The activation function to use.
"""
self.activation = activation
def get_activation(self):
"""
# Get the activation function of the layer.
Returns:
- str: The activation function of the layer.
"""
return self.activation
def forward(self, input_data):
"""
# Feed-Forward for the layer.
Args:
- input_data (np.array): The input data to the layer.
"""
self.output = np.dot(input_data, self.get_weights())
if self.use_bias:
self.output += self.bias
if self.activation is not None:
activation_function = ActivationFunctions()
self.output = activation_function.activation_functions(self.activation, self.output)
return self.output
else:
return self.output
class FlattenLayer:
"""
# Flatten Layer.
"""
def __init__(self):
pass
def forward(self, input_data):
"""
# Feed-Forward for the layer.
Args:
- input_data (np.array): The input data to the layer.
"""
self.output = input_data.flatten()
return self.output