Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TypeError: 'NoneType' object is not iterable #585

Open
jez120 opened this issue May 20, 2023 · 3 comments
Open

TypeError: 'NoneType' object is not iterable #585

jez120 opened this issue May 20, 2023 · 3 comments

Comments

@jez120
Copy link

jez120 commented May 20, 2023

lesson 2, getting this error, how to fix this?

dls = bears.dataloaders(path)


TypeError Traceback (most recent call last)
in <cell line: 1>()
----> 1 dls = bears.dataloaders(path)

6 frames
/usr/local/lib/python3.10/dist-packages/fastai/data/core.py in setup(self, train_setup)
395 x = f(x)
396 self.types.append(type(x))
--> 397 types = L(t if is_listy(t) else [t] for t in self.types).concat().unique()
398 self.pretty_types = '\n'.join([f' - {t}' for t in types])
399

TypeError: 'NoneType' object is not iterable

@youssefokeil
Copy link

I am getting the same error

@essteer
Copy link

essteer commented Feb 15, 2024

I had the same problem, but was able to get around it by changing some of the code to match the image search code in the "Is it s bird? Creating a model from your own data" notebook from Lesson 1.

Couple of notes:

  1. These changes work as of 15 February 2024.
  2. I ran the notebook in Colab - results unknown for Kaggle and Jupyter.
  3. As per the updated Lesson 2 video, we can now use DuckDuckGo instead of Bing, without the need for an API key. The code below is based on DuckDuckGo.

My code up to "Turning Your Model into an Online Application" section is as follows:

#hide
! [ -e /content ] && pip install -Uqq fastbook
import fastbook
fastbook.setup_book()

#hide
from fastbook import *
from fastai.vision.widgets import *
# Add below import (based on Is It A Bird? notebook)
from fastdownload import download_url

# Replaced search_images_bing with DuckDuckGo
search_images_ddg

# Use function definition from "Is it a bird?" notebook
def search_images(term, max_images=30):
    print(f"Searching for '{term}'")
    return L(search_images_ddg(term, max_images=max_images))

results = search_images_ddg('grizzly bear')
ims = results.attrgot('contentUrl')
len(ims)

#hide
ims = ['http://3.bp.blogspot.com/-S1scRCkI3vY/UHzV2kucsPI/AAAAAAAAA-k/YQ5UzHEm9Ss/s1600/Grizzly%2BBear%2BWildlife.jpg']

dest = 'images/grizzly.jpg'
download_url(ims[0], dest)

bear_types = 'grizzly','black','teddy'
path = Path('bears')

from time import sleep

for o in bear_types:
    dest = (path/o)
    dest.mkdir(exist_ok=True, parents=True)
    # results = search_images(f'{o} bear')
    download_images(dest, urls=search_images(f'{o} bear'))
    sleep(5)  # Pause between bear_types searches to avoid over-loading server

fns = get_image_files(path)
fns

len(fns)

failed = verify_images(fns)
failed

failed.map(Path.unlink);

bears = DataBlock(
    blocks=(ImageBlock, CategoryBlock),
    get_items=get_image_files,
    splitter=RandomSplitter(valid_pct=0.2, seed=42),
    get_y=parent_label,
    item_tfms=Resize(128))

dls = bears.dataloaders(path)

dls.valid.show_batch(max_n=4, nrows=1)

bears = bears.new(item_tfms=Resize(128, ResizeMethod.Squish))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)

bears = bears.new(item_tfms=Resize(128, ResizeMethod.Pad, pad_mode='zeros'))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)

bears = bears.new(item_tfms=RandomResizedCrop(128, min_scale=0.3))
dls = bears.dataloaders(path)
dls.train.show_batch(max_n=4, nrows=1, unique=True)

bears = bears.new(item_tfms=Resize(128), batch_tfms=aug_transforms(mult=2))
dls = bears.dataloaders(path)
dls.train.show_batch(max_n=8, nrows=2, unique=True)

bears = bears.new(
    item_tfms=RandomResizedCrop(224, min_scale=0.5),
    batch_tfms=aug_transforms())
dls = bears.dataloaders(path)

learn = vision_learner(dls, resnet18, metrics=error_rate)
learn.fine_tune(4)

interp = ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix()

interp.plot_top_losses(5, nrows=1)

#hide_output
cleaner = ImageClassifierCleaner(learn)
cleaner

#hide
for idx in cleaner.delete(): cleaner.fns[idx].unlink()
for idx,cat in cleaner.change(): shutil.move(str(cleaner.fns[idx]), path/cat)

Hope this helps until a fix is introduced!

@coffius
Copy link

coffius commented Oct 6, 2024

Got the same error from the original code of 01_intro.ipynb

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants