-
Notifications
You must be signed in to change notification settings - Fork 8.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TypeError: 'NoneType' object is not iterable #585
Comments
I am getting the same error |
I had the same problem, but was able to get around it by changing some of the code to match the image search code in the "Is it s bird? Creating a model from your own data" notebook from Lesson 1. Couple of notes:
My code up to "Turning Your Model into an Online Application" section is as follows: #hide
! [ -e /content ] && pip install -Uqq fastbook
import fastbook
fastbook.setup_book()
#hide
from fastbook import *
from fastai.vision.widgets import *
# Add below import (based on Is It A Bird? notebook)
from fastdownload import download_url
# Replaced search_images_bing with DuckDuckGo
search_images_ddg
# Use function definition from "Is it a bird?" notebook
def search_images(term, max_images=30):
print(f"Searching for '{term}'")
return L(search_images_ddg(term, max_images=max_images))
results = search_images_ddg('grizzly bear')
ims = results.attrgot('contentUrl')
len(ims)
#hide
ims = ['http://3.bp.blogspot.com/-S1scRCkI3vY/UHzV2kucsPI/AAAAAAAAA-k/YQ5UzHEm9Ss/s1600/Grizzly%2BBear%2BWildlife.jpg']
dest = 'images/grizzly.jpg'
download_url(ims[0], dest)
bear_types = 'grizzly','black','teddy'
path = Path('bears')
from time import sleep
for o in bear_types:
dest = (path/o)
dest.mkdir(exist_ok=True, parents=True)
# results = search_images(f'{o} bear')
download_images(dest, urls=search_images(f'{o} bear'))
sleep(5) # Pause between bear_types searches to avoid over-loading server
fns = get_image_files(path)
fns
len(fns)
failed = verify_images(fns)
failed
failed.map(Path.unlink);
bears = DataBlock(
blocks=(ImageBlock, CategoryBlock),
get_items=get_image_files,
splitter=RandomSplitter(valid_pct=0.2, seed=42),
get_y=parent_label,
item_tfms=Resize(128))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)
bears = bears.new(item_tfms=Resize(128, ResizeMethod.Squish))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)
bears = bears.new(item_tfms=Resize(128, ResizeMethod.Pad, pad_mode='zeros'))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)
bears = bears.new(item_tfms=RandomResizedCrop(128, min_scale=0.3))
dls = bears.dataloaders(path)
dls.train.show_batch(max_n=4, nrows=1, unique=True)
bears = bears.new(item_tfms=Resize(128), batch_tfms=aug_transforms(mult=2))
dls = bears.dataloaders(path)
dls.train.show_batch(max_n=8, nrows=2, unique=True)
bears = bears.new(
item_tfms=RandomResizedCrop(224, min_scale=0.5),
batch_tfms=aug_transforms())
dls = bears.dataloaders(path)
learn = vision_learner(dls, resnet18, metrics=error_rate)
learn.fine_tune(4)
interp = ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix()
interp.plot_top_losses(5, nrows=1)
#hide_output
cleaner = ImageClassifierCleaner(learn)
cleaner
#hide
for idx in cleaner.delete(): cleaner.fns[idx].unlink()
for idx,cat in cleaner.change(): shutil.move(str(cleaner.fns[idx]), path/cat) Hope this helps until a fix is introduced! |
Got the same error from the original code of |
lesson 2, getting this error, how to fix this?
dls = bears.dataloaders(path)
TypeError Traceback (most recent call last)
in <cell line: 1>()
----> 1 dls = bears.dataloaders(path)
6 frames
/usr/local/lib/python3.10/dist-packages/fastai/data/core.py in setup(self, train_setup)
395 x = f(x)
396 self.types.append(type(x))
--> 397 types = L(t if is_listy(t) else [t] for t in self.types).concat().unique()
398 self.pretty_types = '\n'.join([f' - {t}' for t in types])
399
TypeError: 'NoneType' object is not iterable
The text was updated successfully, but these errors were encountered: