forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rec_multi_loss.py
68 lines (62 loc) · 2.44 KB
/
rec_multi_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
from paddle import nn
from .rec_ctc_loss import CTCLoss
from .rec_sar_loss import SARLoss
from .rec_nrtr_loss import NRTRLoss
class MultiLoss(nn.Layer):
def __init__(self, **kwargs):
super().__init__()
self.loss_funcs = {}
self.loss_list = kwargs.pop("loss_config_list")
self.weight_1 = kwargs.get("weight_1", 1.0)
self.weight_2 = kwargs.get("weight_2", 1.0)
for loss_info in self.loss_list:
for name, param in loss_info.items():
if param is not None:
kwargs.update(param)
loss = eval(name)(**kwargs)
self.loss_funcs[name] = loss
def forward(self, predicts, batch):
self.total_loss = {}
total_loss = 0.0
# batch [image, label_ctc, label_sar, length, valid_ratio]
for name, loss_func in self.loss_funcs.items():
if name == "CTCLoss":
loss = (
loss_func(predicts["ctc"], batch[:2] + batch[3:])["loss"]
* self.weight_1
)
elif name == "SARLoss":
loss = (
loss_func(predicts["sar"], batch[:1] + batch[2:])["loss"]
* self.weight_2
)
elif name == "NRTRLoss":
loss = (
loss_func(predicts["nrtr"], batch[:1] + batch[2:])["loss"]
* self.weight_2
)
else:
raise NotImplementedError(
"{} is not supported in MultiLoss yet".format(name)
)
self.total_loss[name] = loss
total_loss += loss
self.total_loss["loss"] = total_loss
return self.total_loss