forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
combined_loss.py
84 lines (74 loc) · 2.79 KB
/
combined_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from .rec_ctc_loss import CTCLoss
from .center_loss import CenterLoss
from .ace_loss import ACELoss
from .rec_sar_loss import SARLoss
from .distillation_loss import DistillationCTCLoss, DistillCTCLogits
from .distillation_loss import DistillationSARLoss, DistillationNRTRLoss
from .distillation_loss import (
DistillationDMLLoss,
DistillationKLDivLoss,
DistillationDKDLoss,
)
from .distillation_loss import (
DistillationDistanceLoss,
DistillationDBLoss,
DistillationDilaDBLoss,
)
from .distillation_loss import (
DistillationVQASerTokenLayoutLMLoss,
DistillationSERDMLLoss,
)
from .distillation_loss import DistillationLossFromOutput
from .distillation_loss import DistillationVQADistanceLoss
class CombinedLoss(nn.Layer):
"""
CombinedLoss:
a combionation of loss function
"""
def __init__(self, loss_config_list=None):
super().__init__()
self.loss_func = []
self.loss_weight = []
assert isinstance(loss_config_list, list), "operator config should be a list"
for config in loss_config_list:
assert isinstance(config, dict) and len(config) == 1, "yaml format error"
name = list(config)[0]
param = config[name]
assert (
"weight" in param
), "weight must be in param, but param just contains {}".format(
param.keys()
)
self.loss_weight.append(param.pop("weight"))
self.loss_func.append(eval(name)(**param))
def forward(self, input, batch, **kargs):
loss_dict = {}
loss_all = 0.0
for idx, loss_func in enumerate(self.loss_func):
loss = loss_func(input, batch, **kargs)
if isinstance(loss, paddle.Tensor):
loss = {"loss_{}_{}".format(str(loss), idx): loss}
weight = self.loss_weight[idx]
loss = {key: loss[key] * weight for key in loss}
if "loss" in loss:
loss_all += loss["loss"]
else:
loss_all += paddle.add_n(list(loss.values()))
loss_dict.update(loss)
loss_dict["loss"] = loss_all
return loss_dict