forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
iaa_augment.py
92 lines (80 loc) · 3.12 KB
/
iaa_augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/data_loader/modules/iaa_augment.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
import imgaug
import imgaug.augmenters as iaa
class AugmenterBuilder(object):
def __init__(self):
pass
def build(self, args, root=True):
if args is None or len(args) == 0:
return None
elif isinstance(args, list):
if root:
sequence = [self.build(value, root=False) for value in args]
return iaa.Sequential(sequence)
else:
return getattr(iaa, args[0])(
*[self.to_tuple_if_list(a) for a in args[1:]]
)
elif isinstance(args, dict):
cls = getattr(iaa, args["type"])
return cls(**{k: self.to_tuple_if_list(v) for k, v in args["args"].items()})
else:
raise RuntimeError("unknown augmenter arg: " + str(args))
def to_tuple_if_list(self, obj):
if isinstance(obj, list):
return tuple(obj)
return obj
class IaaAugment:
def __init__(self, augmenter_args=None, **kwargs):
if augmenter_args is None:
augmenter_args = [
{"type": "Fliplr", "args": {"p": 0.5}},
{"type": "Affine", "args": {"rotate": [-10, 10]}},
{"type": "Resize", "args": {"size": [0.5, 3]}},
]
self.augmenter = AugmenterBuilder().build(augmenter_args)
def __call__(self, data):
image = data["image"]
shape = image.shape
if self.augmenter:
aug = self.augmenter.to_deterministic()
data["image"] = aug.augment_image(image)
data = self.may_augment_annotation(aug, data, shape)
return data
def may_augment_annotation(self, aug, data, shape):
if aug is None:
return data
line_polys = []
for poly in data["polys"]:
new_poly = self.may_augment_poly(aug, shape, poly)
line_polys.append(new_poly)
data["polys"] = np.array(line_polys)
return data
def may_augment_poly(self, aug, img_shape, poly):
keypoints = [imgaug.Keypoint(p[0], p[1]) for p in poly]
keypoints = aug.augment_keypoints(
[imgaug.KeypointsOnImage(keypoints, shape=img_shape)]
)[0].keypoints
poly = [(p.x, p.y) for p in keypoints]
return poly