This repository has been archived by the owner on May 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathmain_extract.py
77 lines (69 loc) · 3.83 KB
/
main_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import os
import uuid
from pathlib import Path
from imnet_extract import TrainerConfig, ClusterConfig, Trainer
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
def run(input_size,architecture,weight_path,dataset_path,batch,workers,save_path,shared_folder_path,job_id,local_rank,global_rank,num_tasks):
shared_folder=None
data_folder_Path=None
if Path(str(shared_folder_path)).is_dir():
shared_folder=Path(shared_folder_path+"/extract/")
else:
raise RuntimeError("No shared folder available")
if Path(str(dataset_path)).is_dir():
data_folder_Path=Path(str(dataset_path))
else:
raise RuntimeError("No shared folder available")
cluster_cfg = ClusterConfig(dist_backend="nccl", dist_url="")
train_cfg = TrainerConfig(
data_folder=str(data_folder_Path),
architecture=architecture,
weight_path=weight_path,
input_size=input_size,
dataset_path=dataset_path,
batch_per_gpu=batch,
workers=workers,
save_path=save_path,
local_rank=local_rank,
global_rank=global_rank,
num_tasks=num_tasks,
job_id=job_id,
save_folder=str(shared_folder),
)
os.makedirs(str(shared_folder), exist_ok=True)
init_file = shared_folder / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
cluster_cfg = cluster_cfg._replace(dist_url=init_file.as_uri())
trainer = Trainer(train_cfg, cluster_cfg)
#The code should be launch on each GPUs
try:
if global_rank==0:
val_accuracy = trainer.__call__()
print(f"Validation accuracy: {val_accuracy}")
else:
trainer.__call__()
except:
print("Job failed")
if __name__ == "__main__":
parser = ArgumentParser(description="Evaluation script for AERES models",formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--input-size', default=320, type=int, help='Images input size')
parser.add_argument('--architecture', default='IGAM_Resnext101_32x48d', type=str,choices=['ResNet50', 'PNASNet' , 'IGAM_Resnext101_32x48d'], help='Neural network architecture')
parser.add_argument('--weight-path', default='/checkpoint/htouvron/baseline_our_method_BN_FC_URU/13972162/checkpoint_0.pth', type=str, help='Neural network weights')
parser.add_argument('--dataset-path', default='/datasets01_101/imagenet_full_size/061417/val', type=str, help='Dataset path')
parser.add_argument('--batch', default=32, type=int, help='Batch per GPU')
parser.add_argument('--workers', default=40, type=int, help='Numbers of CPUs')
parser.add_argument('--save-path', default='/checkpoint/htouvron/github_reproduce_result_extract/output_extract/', type=str, help='Path where output will be save')
parser.add_argument('--shared-folder-path', default='your/shared/folder', type=str, help='Shared Folder')
parser.add_argument('--job-id', default='0', type=str, help='id of the execution')
parser.add_argument('--local-rank', default=0, type=int, help='GPU: Local rank')
parser.add_argument('--global-rank', default=0, type=int, help='GPU: glocal rank')
parser.add_argument('--num-tasks', default=32, type=int, help='How many GPUs are used')
args = parser.parse_args()
run(args.input_size,args.architecture,args.weight_path,args.dataset_path,args.batch,args.workers,args.save_path,args.shared_folder_path,args.job_id,args.local_rank,args.global_rank,args.num_tasks)