Skip to content
This repository has been archived by the owner on May 1, 2024. It is now read-only.

Latest commit

 

History

History
95 lines (77 loc) · 3.73 KB

README_FixEfficientNet.md

File metadata and controls

95 lines (77 loc) · 3.73 KB

FixEfficientNet

FixRes is a simple method for fixing the train-test resolution discrepancy. It improves the performance of any convolutional neural network architecture. The method is described in the Neurips paper "Fixing the train-test resolution discrepancy" (More results on arXiv).

Hereafter we provide some results reported in this note for EfficientNet models. These models depend on and improve previous trained models, see the references to other models.

ImageNet Results

Models Resolution #Parameters Top-1 / Top-5 Extra training data
FixEfficientNet-B0 320 5.3M 79.3 / 94.6
FixEfficientNet-B0 320 5.3M 80.2 / 95.4 x
FixEfficientNet-B1 384 7.8M 81.3 / 95.7
FixEfficientNet-B1 384 7.8M 82.6 / 96.4 x
FixEfficientNet-B2 420 9.2M 82.0 / 96.0
FixEfficientNet-B2 420 9.2M 83.6 / 96.9 x
FixEfficientNet-B3 472 12M 83.0 / 96.4
FixEfficientNet-B3 472 12M 85.0 / 97.4 x
FixEfficientNet-B4 512 19M 84.0 / 97.0
FixEfficientNet-B4 472 19M 85.9 / 97.7 x
FixEfficientNet-B5 576 30M 84.7 / 97.2
FixEfficientNet-B5 576 30M 86.4/ 97.9 x
FixEfficientNet-B6 576 43M 84.9 / 97.3
FixEfficientNet-B6 680 43M 86.7 / 98.0 x
FixEfficientNet-B7 632 66M 85.3 / 97.4
FixEfficientNet-B7 632 66M 87.1 / 98.2 x
FixEfficientNet-B8 800 87.4M 85.7 / 97.6
FixEfficientNet-L2 600 480M 88.5 / 98.7 x
@inproceedings{touvron2019FixRes,
       author = {Touvron, Hugo and Vedaldi, Andrea and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
       title = {Fixing the train-test resolution discrepancy},
       booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
       year = {2019},
}
@misc{touvron2020FixEfficientNet,
       author = {Touvron, Hugo and Vedaldi, Andrea and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
       title = {Fixing the train-test resolution discrepancy: FixEfficientNet},
       journal={arXiv preprint arXiv:2003.08237},
       year = {2020},
}

References to other models

Model definition scripts and pretrained weights are from https://github.com/rwightman/pytorch-image-models.

The corresponding papers are as follows.

For models with extra-training data:

@misc{xie2019selftraining,
    author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le,
    title="{Self-training with Noisy Student improves ImageNet classification}",
    journal = {arXiv preprint arXiv:1911.04252},
    year=2019,
}

For models without extra-training data:

@misc{xie2019adversarial,
    author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le,
    title="{Adversarial Examples Improve Image Recognition}",
    journal = {arXiv preprint arXiv:1911.09665},
    year="2019",
}
@misc{tan2019efficientnet,
  author    = {Mingxing Tan and Quoc V. Le},
  title     = "{EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}",
  journal   = {arXiv preprint arXiv:1905.11946},
  year= "2019",
}

License

FixRes is CC BY-NC 4.0 licensed, as found in the LICENSE file.