Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Diskussion: Was ist Geiern? #3

Open
StefanWinters opened this issue Apr 26, 2021 · 8 comments
Open

Diskussion: Was ist Geiern? #3

StefanWinters opened this issue Apr 26, 2021 · 8 comments

Comments

@StefanWinters
Copy link

Was ist Geiern? Gute Frage, schwere Frage. Haben die beiden es irgendwann Mal selbst definiert?

Derzeitige Definition:
"Es wurde gegeiert, sobald ein Spieler seinen Tipp zuletzt abgibt und die Zahl näher am Tipp des ersten Spielers ist, als an der eigentlichen Viewzahl des Videos."

Ich, wiederum, habe es mir bisher immer so definiert, dass gegeiert wurde, wenn der zweite Tipp weniger als Faktor 2 kleiner oder größer ist, d. h. mehr als die Hälfte oder weniger als das Doppelte.
Beispiel:
Lars 40, Florentin 25. 20 fände ich in Ordnung. Oder 80+.
Das zieht darauf ab, dass in vielen Runden beide in die gleiche Richtung gehen (in diesem Fall klar unter 100), aber man trotzdem dem ersten Tipp genug Spielraum gibt. 39 zu tippen nimmt klar Lars die Chance ein wenig zu hoch geschätzt zu haben.

Was denkt ihr ist die Definition von Geiern?

@Greg0ry333
Copy link

Habe mir hiefür auch mal einen GitHub Acc erstellt,

finde auch, geiern sollte unabhängig von den tatsächlichen Klixx sein, zumal man die ja vorher gar nicht wissen kann

Stattdessen sollte, wie vorgeschlagen, an der Erstschätzung gemessen werde
Ich persönlich nehme immer die Hälfte y der Erstschätzung x, Wenn die Zweitschätzung dann im Bereich von x +- y liegt, war es für mich geiern

letztendlich kann man die konkrete Rechnung anpassen, mich würde aber eine Statistik, die sich an der Erstschätzung orientiert interessieren, falls es möglich ist

@fabianallendorf
Copy link
Owner

Ich hatte anfänglich ebenfalls eine Auswertung erstellt bei der die Annahme war, es hat jemand gegeiert wenn er in einem bestimmten Bereich um die Erstschätzung getippt hat. Das Problem daran finde ich, dass die tatsächlichen Views doch einen unterschwelligen Einfluss haben wie man das geiern toleriert. Wenn vor den Tipps beide übereinstimmen, dass das Video wenig Views haben könnte, ist die Toleranz höher wenn die Zweischätzung näher an der Erstschätzung liegt. Man würde bei einem "schlechten" Video einen Unterschied von 5 Klixx eher verschmerzen, als bei einem "guten" Video und ein Unterschied von 50 Klixx. Ich weiß nicht ob ich mich verständlich ausgedrückt habe. Kurz und knapp wollte ich sagen, dass die Toleranzgrenze sinkt wenn die tatsächlichen Viewzahl steigt. Deshalb habe ich es in meiner Definition berücksichtigt.

Ich würde gerne dennoch mehrere Grafiken als Alternativen auf die Seite packen, damit man vergleichen kann. Ich hoffe ich finde in den nächsten Tagen Zeit dafür.

@klauskoflattich
Copy link

Hallo zusammen,

ich glaube, das Geierproblem muss man anhand der bekannten Daten operationalisieren. Man kann die Schätzungen der Spieler gegeneinander plotten, d.h. wenn der Punkt auf der 45 Grad-Diagonale liegt, hätten beide dieselbe Schätzung abgegeben (ich habe zusätzlich die Punkte danach eingefärbt, wer zuerst geschätzt hat: Lars rot, Florentin grün). Wenn man jetzt logarithmische Skalen verwendet, erkennt man direkt in der Mitte einen freien Korridor, der den Höflichkeitsabstand zwischen Schätzungen angibt.
Geier1

Die Geraden, die diesen "Geierkorridor" m.E. am besten einfassen, haben intercepts von 0,2 bzw. -0,2:
Geier2

Wegen der logarithmischen Skala ergibt das 10^0,2 = ca. 8/5 bzw. 10^-0,2 = ca. 5/8. Als Entscheidungsregel hieße das: Um als zweiter Schätzer nicht zu geiern, muss man entweder oberhalb von 8/5 (ca. das 1,6fache) oder unterhalb von 5/8 (ca. das 0,625fache) schätzen. Wenn also z.B. Lars vorlegt und 100 schätzt, müsste Florentin, um nicht zu geiern, mehr als 160 oder weniger als 63 schätzen.
Geier3

Man sieht schon in den Grafiken, dass die meisten Punkte innerhalb des so bestimmten "Geierkorridors" rot sind, d.h. Lars hat zuerst geschätzt und Florentin hat gegeiert. Wende ich die gerade beschriebene Regel auf meine Daten an, komme ich darauf, dass Florentin von 977 Schätzungen, bei denen er als zweiter dran war, 57 mal gegeiert hat (ca. 5,8%) und Lars in 1004 Fällen nur 14 mal (1,4%). Demnach wäre Florentin ganz klar der Geierkönig.

Gruß, K.

@StefanWinters
Copy link
Author

Klasse Arbeit. Finde ich sehr gut. Sieht sehr schön aus.

Aber einige Fragen:

  • dein festgelegter Korridor basiert darauf, dass in den meisten Runden (>95%) nicht gegeiert wird und du nur klare Ausreißer als Geiern betrachtest. Was ist, wenn du vorher sagst, der Korridor ist z. B. zwischen der Hälfte und dem Doppelten (meine bisherige Ansichtsweise). Wir haben dann viel mehr Geiern. Wer führt dann? Florentin hat deiner Berechnung nach die klarsten Geier Tipps, aber vielleicht hat Lars viel öfter nur ein bisschen gegeiert was sich über die Zeit läppert.
  • hast du die tatsächlichen Views einberechnet? Das ist ja auch offen, ob man die mit einbeziehen soll oder nicht. Gab viele Kommentare unterm YouTube Video in dem die Statistiken und Geiern angesprochen wurde, da kam das oft auf. Wenn der erste Tipp 50 ist und die tatsächlichen Views 60. Gibt man dem ersten Tipp den Korridor und sagt wenn die tatsächlichen Views drin sind "du bist nah genug dran, der Punkt gehört dir" oder erlaubt man dem zweiten Tipp das Risiko einzugehen genau zu treffen mit der Gefahr zu Geiern. Das Ziel ist ja nunmal genau zu treffen oder so nah wie möglich zu sein. Wenn man sagt "50 ist nah genug, ich wähle 100 auch wenn ich's nicht glaube, zumindest nicht gegeiert" fehlt da die Würze und der Wille genau zu treffen. Die Regel "Wenn der zweite Tipp näher am richtigen Wert liegt als am ersten Tipp, ist's nicht gegeiert" finde ich ganz spannend.

@klauskoflattich
Copy link

Hi,

m.E. muss man Geiern unabhängig von den tatsächlichen Klicks sehen. Das entspräche auch der Art, wie es in der Show gebraucht wird: Die Spieler beschuldigen einander während der Schätzphase, gegeiert zu haben, während die wahre Klickzahl noch unbekannt ist. Das Ergebnis mit einzubeziehen widerspräche auch der Annahme, dass Geiern eine Frage der Intention ist: der Spieler, der als zweiter schätzt, könnte sich sehr eng an der Schätzung des ersten orientieren, aber dann „Glück haben“, dass er näher an der wahren Klickzahl landet als an der Schätzung des ersten Spielers. Dann würde es nicht als Geiern gezählt, obwohl er es (der Intention nach) getan hat, was m.E. nicht wünschenswert ist. Die unvermeidliche Schlussfolgerung, dass man dann eben manchmal geiern muss, um zu gewinnen (z.B. um genau zu treffen), finde ich nicht schlimm.

Was den „zulässigen“ Korridors angeht, so kann man ihn natürlich nach Belieben verbreitern oder verschmälern. Eine eher restriktive Definition (ein „schmaler“ Korridor) würde der Idee entsprechen, die Spieler nicht durch falsche Höflichkeit zu sehr einzuschränken.

Meiner Meinung nach entspricht es eher dem Geist des Spiels, das Geiern binär zu betrachten; entweder eine Schätzung ist gegeiert oder nicht. Verschiedene Grade der Geierei zu unterscheiden, ist zwar verlockend, aber da in der Show ja auch nur zählt, wer näher an der richtigen Klickzahl liegt (nicht, wie viel näher), würde ich es mit der Geierregel auch so halten.

@fabianallendorf
Copy link
Owner

Danke @klauskoflattich. Ich habe deine Ergebnisse in der Seite eingebaut, inklusive Scatter Plot. Ich bin allerdings auf etwas andere Endergebnisse gekommen, wobei Florentin trotzdem deutlich öfter gegeiert hat.

@klauskoflattich
Copy link

Danke @klauskoflattich. Ich habe deine Ergebnisse in der Seite eingebaut, inklusive Scatter Plot. Ich bin allerdings auf etwas andere Endergebnisse gekommen, wobei Florentin trotzdem deutlich öfter gegeiert hat.

Danke dir, die Website sieht sehr gut aus. Bei den exakten Ergebnissen bin ich nicht kleinlich; die Richtung stimmt ja.

@fabianallendorf
Copy link
Owner

Bei den exakten Ergebnissen bin ich nicht kleinlich; die Richtung stimmt ja.

😀 mich würde nur interessieren warum es Unterschiede gibt. Vielleicht liegt es daran, dass ich bei meiner Auswertung nicht exakt 10^0,2 und 10^-0,2 verwendet habe, sondern die Approximationen 1,6 und 0,625

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

4 participants