-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpredictions.py
96 lines (85 loc) · 4.14 KB
/
predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import torch
import torch.nn as nn
import numpy as np
class MorseBatchedLSTMStack(nn.Module):
"""
LSTM stack with dataset input
"""
def __init__(self, device, nb_lstm_layers=2, input_size=1, hidden_layer_size=8, output_size=6, dropout=0.2):
super().__init__()
self.device = device # This is the only way to get things work properly with device
self.nb_lstm_layers = nb_lstm_layers
self.input_size = input_size
self.hidden_layer_size = hidden_layer_size
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_layer_size, num_layers=self.nb_lstm_layers, dropout=dropout)
self.linear = nn.Linear(hidden_layer_size, output_size)
self.hidden_cell = (torch.zeros(self.nb_lstm_layers, 1, self.hidden_layer_size).to(self.device),
torch.zeros(self.nb_lstm_layers, 1, self.hidden_layer_size).to(self.device))
self.use_minmax = False
def _minmax(self, x):
x -= x.min(0)[0]
x /= x.max(0)[0]
def _hardmax(self, x):
x /= x.sum()
def _sqmax(self, x):
x = x**2
x /= x.sum()
def forward(self, input_seq):
#print(len(input_seq), input_seq.shape, input_seq.view(-1, 1, 1).shape)
lstm_out, self.hidden_cell = self.lstm(input_seq.view(-1, 1, self.input_size), self.hidden_cell)
predictions = self.linear(lstm_out.view(len(input_seq), -1))
if self.use_minmax:
self._minmax(predictions[-1])
return predictions[-1]
def zero_hidden_cell(self):
self.hidden_cell = (
torch.zeros(self.nb_lstm_layers, 1, self.hidden_layer_size).to(device),
torch.zeros(self.nb_lstm_layers, 1, self.hidden_layer_size).to(device)
)
class Predictions:
def __init__(self):
self.tbuffer = None
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Torch using {self.device}")
self.max_ele = 5 # Number of Morse elements considered
self.look_back = 208 # Constant coming from model training
self.model = MorseBatchedLSTMStack(self.device, nb_lstm_layers=2, hidden_layer_size=60, output_size=self.max_ele+2, dropout=0.1).to(self.device)
self.model.use_minmax = True
self.lp_len = 3
self.lp_win = np.ones(self.lp_len) / self.lp_len
self.lp = True # post process predictions through moving average low pass filtering
@staticmethod
def pytorch_rolling_window(x, window_size, step_size=1):
# unfold dimension to make our rolling window
return x.unfold(0,window_size,step_size)
def load_model(self, filename):
self.model.load_state_dict(torch.load(filename, map_location=self.device))
self.model.eval()
def new_data(self, data):
""" Takes the latest portion of the signal envelope as a numpy array,
make predictions using the model and interpret results to produce decoded text.
"""
if self.tbuffer is None:
self.tbuffer = torch.FloatTensor(data).to(self.device)
else:
self.tbuffer = torch.cat((self.tbuffer, torch.FloatTensor(data).to(self.device)))
if len(self.tbuffer) > self.look_back:
l = len(self.tbuffer) - self.look_back + 1
self.cbuffer = self.tbuffer[-l:].cpu()
X_tests = self.pytorch_rolling_window(self.tbuffer, self.look_back, 1)
self.tbuffer = X_tests[-1][1:]
p_preds = torch.empty(1, self.max_ele+2).to(self.device)
for X_test in X_tests:
with torch.no_grad():
y_pred = self.model(X_test)
p_preds = torch.cat([p_preds, y_pred.reshape(1, self.max_ele+2)])
p_preds = p_preds[1:] # drop first garbage sample
p_preds_t = torch.transpose(p_preds, 0, 1).cpu()
if self.lp:
p_preds_t = np.apply_along_axis(lambda m: np.convolve(m, self.lp_win, mode='full'), axis=1, arr=p_preds_t)
self.p_preds_t = p_preds_t[:,:-self.lp_len+1]
else:
self.p_preds_t = p_preds_t
else:
self.p_preds_t = None
self.cbuffer = None