Skip to content

Latest commit

 

History

History
executable file
·
179 lines (126 loc) · 7.88 KB

README.md

File metadata and controls

executable file
·
179 lines (126 loc) · 7.88 KB

BERT下游任务finetune列表

finetune基于官方代码改造的模型基于pytorch/tensorflow双版本

*** 2019-10-24: 增加ERNIE1.0, google-bert-base, bert_wwm_ext_base部分结果, xlnet代码和相关结果 ***

*** 2019-10-17: 增加tensorflow多gpu并行 ***

*** 2019-10-16: 增加albert_xlarge结果 ***

*** 2019-10-15: 增加tensorflow(bert/roberta)在cmrc2018上的finetune代码(暂仅支持单卡) ***

*** 2019-10-14: 新增DRCD test结果 ***

*** 2019-10-12: pytorch支持albert ***

*** 2019-12-9: 新增cmrc2019 finetune google版albert, 新增CHID finetune代码***

*** 2019-12-22: 新增c3 finetune代码和CHID, c3的部分结果***

*** 2020-6-4: 新增pytorch转tf,tf转pb,以及pb测试demo***

模型及相关代码来源

  1. 官方Bert (https://github.com/google-research/bert)

  2. transformers (https://github.com/huggingface/transformers)

  3. 哈工大讯飞预训练 (https://github.com/ymcui/Chinese-BERT-wwm)

  4. brightmart预训练 (https://github.com/brightmart/roberta_zh)

  5. 自己瞎折腾的siBert (https://github.com/ewrfcas/SiBert_tensorflow)

关于pytorch的FP16

FP16的训练可以显著降低显存压力(如果有V100等GPU资源还能提高速度)。但是最新版编译的apex-FP16对并行的支持并不友好(NVIDIA/apex#227)
实践下来bert相关任务的finetune任务对fp16的数值压力是比较小的,因此可以更多的以计算精度换取效率,所以我还是倾向于使用老版的FusedAdam+FP16_Optimizer的组合。
由于最新的apex已经舍弃这2个方法了,需要在编译apex的时候额外加入命令--deprecated_fused_adam

pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext"  --global-option="--deprecated_fused_adam" ./

关于tensorflow的blocksparse

blocksparse(https://github.com/openai/blocksparse)
可以在tensorflow1.13版本直接pip安装,否则可以自己clone后编译。
其中fast_gelu以及self-attention中的softmax能够极大缓解显存压力。另外部分dropout位置我有所调整,整体显存占用下降大约30%~40%。

model length batch memory
roberta_base_fp16 512 32 16GB
roberta_large_fp16 512 12 16GB

参与任务

  1. CMRC 2018:篇章片段抽取型阅读理解(简体中文,只测了dev)

  2. DRCD:篇章片段抽取型阅读理解(繁体中文,转简体, 只测了dev)

  3. CJRC: 法律阅读理解(简体中文, 只有训练集,统一90%训练,10%测试)

  4. CHID: 多选成语阅读理解

  5. C3: 多选中文阅读理解

评测标准

验证集一般会调整learning_rate,warmup_rate,train_epoch等参数,选择最优的参数用五个不同的随机种子测试5次取平均和括号内最大值。测试集会直接用最佳的验证集模型进行验证。

模型介绍

L(transformer layers), H(hidden size), A(attention head numbers), E(embedding size)

特别注意brightmart roberta_large所支持的max_len只有256

models config
google_bert_base L=12, H=768, A=12, max_len=512
siBert_base L=12, H=768, A=12, max_len=512
siALBert_middle L=16, H=1024, E=128, A=16, max_len=512
哈工大讯飞 bert_wwm_ext_base L=12, H=768, A=12, max_len=512
哈工大讯飞 roberta_wwm_ext_base L=12, H=768, A=12, max_len=512
哈工大讯飞 roberta_wwm_ext_large L=24, H=1024, A=16, max_len=512
ERNIE1.0 L=12, H=768, A=12, max_len=512
xlnet-mid L=24, H=768, A=12, max_len=512
brightmart roberta_middle L=24, H=768, A=12, max_len=512
brightmart roberta_large L=24, H=1024, A=16, max_len=256
brightmart albert_large L=24, H=1024, E=128, A=16, max_len=512
brightmart albert_xlarge L=24, H=2048, E=128, A=32, max_len=512
google albert_xxlarge L=12, H=4096, E=128, A=16, max_len=512

结果

参数

未列出均为epoch2, batch=32, lr=3e-5, warmup=0.1

models cmrc2018 DRCD CJRC
哈工大讯飞 roberta_wwm_ext_base epoch2, batch=32, lr=3e-5, warmup=0.1 同左 同左
哈工大讯飞 roberta_wwm_ext_large epoch2, batch=12, lr=2e-5, warmup=0.1 epoch2, batch=32, lr=2.5e-5, warmup=0.1 -
brightmart roberta_middle epoch2, batch=32, lr=3e-5, warmup=0.1 同左 同左
brightmart roberta_large epoch2, batch=32, lr=3e-5, warmup=0.1 同左 同左
brightmart albert_large epoch3, batch=32, lr=2e-5, warmup=0.05 epoch3, batch=32, lr=2e-5, warmup=0.05 epoch2, batch=32, lr=3e-5, warmup=0.1
brightmart albert_xlarge epoch3, batch=32, lr=2e-5, warmup=0.1 epoch3, batch=32, lr=2.5e-5, warmup=0.06 epoch2, batch=32, lr=2.5e-5, warmup=0.05

cmrc2018(阅读理解)

models setting DEV
哈工大讯飞 roberta_wwm_ext_large tf单卡finetune batch=12 F1:89.415(89.724) EM:70.593(71.358)
models DEV
google_bert_base F1:85.476(85.682) EM:64.765(65.921)
sibert_base F1:87.521(88.628) EM:67.381(69.152)
sialbert_middle F1:87.6956(87.878) EM:67.897(68.624)
哈工大讯飞 bert_wwm_ext_base F1:86.679(87.473) EM:66.959(69.09)
哈工大讯飞 roberta_wwm_ext_base F1:87.521(88.628) EM:67.381(69.152)
哈工大讯飞 roberta_wwm_ext_large F1:89.415(89.724) EM:70.593(71.358)
ERNIE1.0 F1:87.300(87.733) EM:66.890(68.251)
xlnet-mid F1:85.625(86.076) EM:65.312(66.076)
brightmart roberta_middle F1:86.841(87.242) EM:67.195(68.313)
brightmart roberta_large F1:88.608(89.431) EM:69.935(72.538)
brightmart albert_large F1:87.860(88.43) EM:67.754(69.028)
brightmart albert_xlarge F1:88.657(89.426) EM:68.897(70.643)

DRCD(阅读理解)

models DEV TEST
google_bert_base F1:92.296(92.565) EM:86.600(87.089) F1:91.464 EM:85.485
siBert_base F1:93.343(93.524) EM:87.968(88.28) F1:92.818 EM:86.745
siALBert_middle F1:93.865(93.975) EM:88.723(88.961) F1:93.857 EM:88.033
哈工大讯飞 bert_wwm_ext_base F1:93.265(93.393) EM:88.002(88.28) F1:92.633 EM:87.145
哈工大讯飞 roberta_wwm_ext_base F1:94.257(94.48) EM:89.291(89.642) F1:93.526 EM:88.119
哈工大讯飞 roberta_wwm_ext_large F1:95.323(95.54) EM:90.539(90.692) F1:95.060 EM:90.696
ERNIE1.0 F1:92.779(93.021) EM:86.845(87.259) F1:92.011 EM:86.029
xlnet-mid F1:92.081(92.175) EM:84.404(84.563) F1:91.439 EM:83.281
brightmart roberta_large F1:94.933(95.057) EM:90.113(90.238) F1:94.254 EM:89.350
brightmart albert_large F1:93.903(94.034) EM:88.882(89.132) F1:93.057 EM:87.518
brightmart albert_xlarge F1:94.626(95.101) EM:89.682(90.125) F1:94.697 EM:89.780

CJRC(带有yes,no,unkown的阅读理解)

models DEV
siBert_base F1:80.714(81.14) EM:64.44(65.04)
siALBert_middle F1:80.9838(81.299) EM:63.796(64.202)
哈工大讯飞 roberta_wwm_ext_base F1:81.510(81.684) EM:64.924(65.574)
brightmart roberta_large F1:80.16(80.475) EM:65.249(66.133)
brightmart albert_large F1:81.113(81.563) EM:65.346(65.727)
brightmart albert_xlarge F1:81.879(82.328) EM:66.164(66.387)

CHID(多选成语阅读理解)

models DEV TEST OUT
google_base 82.20 82.04 77.07
哈工大讯飞 roberta_wwm_ext_base 83.78 83.62 -
哈工大讯飞 roberta_wwm_ext_large 85.81 85.37 81.98
brightmart roberta_large 85.31 84.50 -
brightmart albert_xlarge 79.44 79.55 75.39
google albert_xxlarge 83.61 83.15 79.95

C3(多选中文阅读理解)

models DEV TEST
哈工大讯飞 roberta_wwm_ext_base 67.06 66.50
哈工大讯飞 roberta_wwm_ext_large 74.48 73.82
google albert_xxlarge 73.66 73.28
brightmart roberta_large 67.79 67.55