-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathDRCD_test_pytorch.py
149 lines (128 loc) · 7.01 KB
/
DRCD_test_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import argparse
import json
import torch
import utils
from glob import glob
from models.pytorch_modeling import BertConfig, BertForQuestionAnswering, ALBertConfig, ALBertForQA
from evaluate.DRCD_output import write_predictions
from evaluate.cmrc2018_evaluate import get_eval
import collections
from torch import nn
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm
from tokenizations import official_tokenization as tokenization
from preprocess.DRCD_preprocess import json2features
def test(model, args, eval_examples, eval_features, device):
print("***** Eval *****")
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits"])
output_prediction_file = os.path.join(args.checkpoint_dir, "predictions_test.json")
output_nbest_file = output_prediction_file.replace('predictions', 'nbest')
all_input_ids = torch.tensor([f['input_ids'] for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f['input_mask'] for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f['segment_ids'] for f in eval_features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
eval_dataloader = DataLoader(eval_data, batch_size=args.n_batch, shuffle=False)
model.eval()
all_results = []
print("Start evaluating")
for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
with torch.no_grad():
batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
for i, example_index in enumerate(example_indices):
start_logits = batch_start_logits[i].detach().cpu().tolist()
end_logits = batch_end_logits[i].detach().cpu().tolist()
eval_feature = eval_features[example_index.item()]
unique_id = int(eval_feature['unique_id'])
all_results.append(RawResult(unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits))
write_predictions(eval_examples, eval_features, all_results,
n_best_size=args.n_best, max_answer_length=args.max_ans_length,
do_lower_case=True, output_prediction_file=output_prediction_file,
output_nbest_file=output_nbest_file)
tmp_result = get_eval(args.test_file, output_prediction_file)
print(tmp_result)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_ids', type=str, default='1')
# training parameter
parser.add_argument('--train_epochs', type=int, default=2)
parser.add_argument('--n_batch', type=int, default=32)
parser.add_argument('--lr', type=float, default=3e-5)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--clip_norm', type=float, default=1.0)
parser.add_argument('--warmup_rate', type=float, default=0.1)
parser.add_argument("--schedule", default='warmup_linear', type=str, help='schedule')
parser.add_argument("--weight_decay_rate", default=0.01, type=float, help='weight_decay_rate')
parser.add_argument('--float16', type=bool, default=True) # only sm >= 7.0 (tensorcores)
parser.add_argument('--max_ans_length', type=int, default=50)
parser.add_argument('--n_best', type=int, default=20)
parser.add_argument('--eval_epochs', type=float, default=0.5)
parser.add_argument('--save_best', type=bool, default=True)
parser.add_argument('--vocab_size', type=int, default=21128)
# data dir
parser.add_argument('--test_dir1', type=str,
default='dataset/DRCD/test_examples_roberta512.json')
parser.add_argument('--test_dir2', type=str,
default='dataset/DRCD/test_features_roberta512.json')
parser.add_argument('--test_file', type=str,
default='origin_data/DRCD/DRCD_test.json')
parser.add_argument('--bert_config_file', type=str,
default='check_points/pretrain_models/bert_wwm_ext_base/bert_config.json')
parser.add_argument('--vocab_file', type=str,
default='check_points/pretrain_models/bert_wwm_ext_base/vocab.txt')
parser.add_argument('--init_restore_dir', type=str,
default='check_points/DRCD/bert_wwm_ext_base/')
parser.add_argument('--checkpoint_dir', type=str,
default='check_points/DRCD/bert_wwm_ext_base/')
# use some global vars for convenience
args = parser.parse_args()
args.checkpoint_dir += ('/epoch{}_batch{}_lr{}_warmup{}_anslen{}/'
.format(args.train_epochs, args.n_batch, args.lr, args.warmup_rate, args.max_ans_length))
args.init_restore_dir += ('/epoch{}_batch{}_lr{}_warmup{}_anslen{}/'
.format(args.train_epochs, args.n_batch, args.lr, args.warmup_rate, args.max_ans_length))
args.init_restore_dir = glob(args.init_restore_dir + '*.pth')
assert len(args.init_restore_dir) == 1
args.init_restore_dir = args.init_restore_dir[0]
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
device = torch.device("cuda")
n_gpu = torch.cuda.device_count()
print("device %s n_gpu %d" % (device, n_gpu))
print("device: {} n_gpu: {} 16-bits training: {}".format(device, n_gpu, args.float16))
# load the bert setting
if 'albert' not in args.bert_config_file:
bert_config = BertConfig.from_json_file(args.bert_config_file)
else:
bert_config = ALBertConfig.from_json_file(args.bert_config_file)
# load data
print('loading data...')
tokenizer = tokenization.BertTokenizer(vocab_file=args.vocab_file, do_lower_case=True)
assert args.vocab_size == len(tokenizer.vocab)
if not os.path.exists(args.test_dir1) or not os.path.exists(args.test_dir2):
json2features(args.test_file, [args.test_dir1, args.test_dir2], tokenizer, is_training=False,
max_seq_length=bert_config.max_position_embeddings)
test_examples = json.load(open(args.test_dir1, 'r'))
test_features = json.load(open(args.test_dir2, 'r'))
dev_steps_per_epoch = len(test_features) // args.n_batch
if len(test_features) % args.n_batch != 0:
dev_steps_per_epoch += 1
# init model
print('init model...')
if 'albert' not in args.init_restore_dir:
model = BertForQuestionAnswering(bert_config)
else:
model = ALBertForQA(bert_config, dropout_rate=args.dropout)
utils.torch_show_all_params(model)
utils.torch_init_model(model, args.init_restore_dir)
if args.float16:
model.half()
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
test(model, args, test_examples, test_features, device)