-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathCJRC_finetune_pytorch.py
289 lines (251 loc) · 13.8 KB
/
CJRC_finetune_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import random
import os
import argparse
import numpy as np
import json
import torch
import utils
from models.pytorch_modeling import BertConfig, BertForQA_CLS, ALBertForQA_CLS, ALBertConfig
from optimizations.pytorch_optimization import get_optimization, warmup_linear
from evaluate.CJRC_output import write_predictions
from evaluate.cmrc2018_evaluate import get_eval_with_neg
import collections
from torch import nn
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm
from tokenizations import official_tokenization as tokenization
from preprocess.CJRC_preprocess import json2features
def evaluate(model, args, eval_examples, eval_features, device, global_steps, best_f1, best_em, best_f1_em):
print("***** Eval *****")
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits", "target_logits"])
output_prediction_file = os.path.join(args.checkpoint_dir,
"predictions_steps" + str(global_steps) + ".json")
output_nbest_file = output_prediction_file.replace('predictions', 'nbest')
all_input_ids = torch.tensor([f['input_ids'] for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f['input_mask'] for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f['segment_ids'] for f in eval_features], dtype=torch.long)
all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
eval_dataloader = DataLoader(eval_data, batch_size=args.n_batch, shuffle=False)
model.eval()
all_results = []
print("Start evaluating")
for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
with torch.no_grad():
batch_start_logits, batch_end_logits, batch_target_logits = model(input_ids, segment_ids, input_mask)
for i, example_index in enumerate(example_indices):
start_logits = batch_start_logits[i].detach().cpu().tolist()
end_logits = batch_end_logits[i].detach().cpu().tolist()
target_logits = batch_target_logits[i].detach().cpu().tolist()
eval_feature = eval_features[example_index.item()]
unique_id = int(eval_feature['unique_id'])
all_results.append(RawResult(unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits,
target_logits=target_logits))
write_predictions(eval_examples, eval_features, all_results,
n_best_size=args.n_best, max_answer_length=args.max_ans_length,
do_lower_case=True, output_prediction_file=output_prediction_file,
output_nbest_file=output_nbest_file, version_2_with_negative=True,
null_score_diff_threshold=args.null_score_diff_threshold)
tmp_result = get_eval_with_neg(args.dev_file, output_prediction_file)
tmp_result['STEP'] = global_steps
with open(args.log_file, 'a') as aw:
aw.write(json.dumps(tmp_result) + '\n')
print(tmp_result)
if float(tmp_result['F1']) > best_f1:
best_f1 = float(tmp_result['F1'])
if float(tmp_result['EM']) > best_em:
best_em = float(tmp_result['EM'])
if float(tmp_result['F1']) + float(tmp_result['EM']) > best_f1_em:
best_f1_em = float(tmp_result['F1']) + float(tmp_result['EM'])
utils.torch_save_model(model, args.checkpoint_dir,
{'f1': float(tmp_result['F1']), 'em': float(tmp_result['EM'])}, max_save_num=1)
model.train()
return best_f1, best_em, best_f1_em
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu_ids', type=str, default='0,1,2,3,4,5,6,7')
# training parameter
parser.add_argument('--train_epochs', type=int, default=3)
parser.add_argument('--n_batch', type=int, default=32)
parser.add_argument('--lr', type=float, default=2.5e-5)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--clip_norm', type=float, default=1.0)
parser.add_argument('--loss_scale', type=float, default=0)
parser.add_argument('--warmup_rate', type=float, default=0.05)
parser.add_argument("--schedule", default='warmup_linear', type=str, help='schedule')
parser.add_argument("--weight_decay_rate", default=0.01, type=float, help='weight_decay_rate')
parser.add_argument('--loss_count', type=int, default=1000)
parser.add_argument('--seed', type=list, default=[123, 456, 789, 556, 977])
parser.add_argument('--float16', type=bool, default=True) # only sm >= 7.0 (tensorcores)
parser.add_argument('--max_ans_length', type=int, default=50)
parser.add_argument('--n_best', type=int, default=20)
parser.add_argument('--eval_epochs', type=float, default=0.5)
parser.add_argument('--save_best', type=bool, default=True)
parser.add_argument('--vocab_size', type=int, default=21128)
parser.add_argument('--null_score_diff_threshold', type=float, default=0.0)
# data dir
parser.add_argument('--train_dir', type=str,
default='dataset/CJRC/train_features_roberta512.json')
parser.add_argument('--dev_dir1', type=str,
default='dataset/CJRC/dev_examples_roberta512.json')
parser.add_argument('--dev_dir2', type=str,
default='dataset/CJRC/dev_features_roberta512.json')
parser.add_argument('--train_file', type=str,
default='origin_data/CJRC/train_data.json')
parser.add_argument('--dev_file', type=str,
default='origin_data/CJRC/dev_data.json')
parser.add_argument('--bert_config_file', type=str,
default='check_points/pretrain_models/albert_xlarge_zh/bert_config.json')
parser.add_argument('--vocab_file', type=str,
default='check_points/pretrain_models/albert_xlarge_zh/vocab.txt')
parser.add_argument('--init_restore_dir', type=str,
default='check_points/pretrain_models/albert_xlarge_zh/pytorch_model.pth')
parser.add_argument('--checkpoint_dir', type=str,
default='check_points/CJRC/albert_xlarge_zh/')
parser.add_argument('--setting_file', type=str, default='setting.txt')
parser.add_argument('--log_file', type=str, default='log.txt')
# use some global vars for convenience
args = parser.parse_args()
args.checkpoint_dir += ('/epoch{}_batch{}_lr{}_warmup{}_anslen{}/'
.format(args.train_epochs, args.n_batch, args.lr, args.warmup_rate, args.max_ans_length))
args = utils.check_args(args)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
device = torch.device("cuda")
n_gpu = torch.cuda.device_count()
print("device %s n_gpu %d" % (device, n_gpu))
print("device: {} n_gpu: {} 16-bits training: {}".format(device, n_gpu, args.float16))
# load the bert setting
if 'albert' not in args.bert_config_file:
bert_config = BertConfig.from_json_file(args.bert_config_file)
else:
bert_config = ALBertConfig.from_json_file(args.bert_config_file)
# load data
print('loading data...')
tokenizer = tokenization.BertTokenizer(vocab_file=args.vocab_file, do_lower_case=True)
assert args.vocab_size == len(tokenizer.vocab)
if not os.path.exists(args.train_dir):
json2features(args.train_file, [args.train_dir.replace('_features_', '_examples_'), args.train_dir],
tokenizer, is_training=True,
max_seq_length=bert_config.max_position_embeddings)
if not os.path.exists(args.dev_dir1) or not os.path.exists(args.dev_dir2):
json2features(args.dev_file, [args.dev_dir1, args.dev_dir2], tokenizer, is_training=False,
max_seq_length=bert_config.max_position_embeddings)
train_features = json.load(open(args.train_dir, 'r'))
dev_examples = json.load(open(args.dev_dir1, 'r'))
dev_features = json.load(open(args.dev_dir2, 'r'))
if os.path.exists(args.log_file):
os.remove(args.log_file)
steps_per_epoch = len(train_features) // args.n_batch
eval_steps = int(steps_per_epoch * args.eval_epochs)
dev_steps_per_epoch = len(dev_features) // args.n_batch
if len(train_features) % args.n_batch != 0:
steps_per_epoch += 1
if len(dev_features) % args.n_batch != 0:
dev_steps_per_epoch += 1
total_steps = steps_per_epoch * args.train_epochs
print('steps per epoch:', steps_per_epoch)
print('total steps:', total_steps)
print('warmup steps:', int(args.warmup_rate * total_steps))
F1s = []
EMs = []
# 存一个全局最优的模型
best_f1_em = 0
for seed_ in args.seed:
best_f1, best_em = 0, 0
with open(args.log_file, 'a') as aw:
aw.write('===================================' +
'SEED:' + str(seed_)
+ '===================================' + '\n')
print('SEED:', seed_)
random.seed(seed_)
np.random.seed(seed_)
torch.manual_seed(seed_)
if n_gpu > 0:
torch.cuda.manual_seed_all(seed_)
# init model
print('init model...')
if 'albert' not in args.init_restore_dir:
model = BertForQA_CLS(bert_config)
else:
model = ALBertForQA_CLS(bert_config, dropout_rate=args.dropout)
utils.torch_show_all_params(model)
utils.torch_init_model(model, args.init_restore_dir)
if args.float16:
model.half()
model.to(device)
if n_gpu > 1:
model = torch.nn.DataParallel(model)
optimizer = get_optimization(model=model,
float16=args.float16,
learning_rate=args.lr,
total_steps=total_steps,
schedule=args.schedule,
warmup_rate=args.warmup_rate,
max_grad_norm=args.clip_norm,
weight_decay_rate=args.weight_decay_rate,
opt_pooler=True)
all_input_ids = torch.tensor([f['input_ids'] for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f['input_mask'] for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f['segment_ids'] for f in train_features], dtype=torch.long)
seq_len = all_input_ids.shape[1]
# 样本长度不能超过bert的长度限制
assert seq_len <= bert_config.max_position_embeddings
# true label
all_start_positions = torch.tensor([f['start_position'] for f in train_features], dtype=torch.long)
all_end_positions = torch.tensor([f['end_position'] for f in train_features], dtype=torch.long)
all_target_labels = torch.tensor([f['target_label'] for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
all_start_positions, all_end_positions, all_target_labels)
train_dataloader = DataLoader(train_data, batch_size=args.n_batch, shuffle=True)
print('***** Training *****')
model.train()
global_steps = 1
best_em = 0
best_f1 = 0
for i in range(int(args.train_epochs)):
print('Starting epoch %d' % (i + 1))
total_loss = 0
iteration = 1
with tqdm(total=steps_per_epoch, desc='Epoch %d' % (i + 1)) as pbar:
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, start_positions, end_positions, all_target_labels = batch
loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions, all_target_labels)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
total_loss += loss.item()
pbar.set_postfix({'loss': '{0:1.5f}'.format(total_loss / (iteration + 1e-5))})
pbar.update(1)
if args.float16:
optimizer.backward(loss)
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used and handles this automatically
lr_this_step = args.lr * warmup_linear(global_steps / total_steps, args.warmup_rate)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
else:
loss.backward()
optimizer.step()
model.zero_grad()
global_steps += 1
iteration += 1
if global_steps % eval_steps == 0:
best_f1, best_em, best_f1_em = evaluate(model, args, dev_examples, dev_features, device,
global_steps, best_f1, best_em, best_f1_em)
F1s.append(best_f1)
EMs.append(best_em)
# release the memory
del model
del optimizer
torch.cuda.empty_cache()
print('Mean F1:', np.mean(F1s), 'Mean EM:', np.mean(EMs))
print('Best F1:', np.max(F1s), 'Best EM:', np.max(EMs))
with open(args.log_file, 'a') as aw:
aw.write('Mean(Best) F1:{}({})\n'.format(np.mean(F1s), np.max(F1s)))
aw.write('Mean(Best) EM:{}({})\n'.format(np.mean(EMs), np.max(EMs)))