forked from jsyoon0823/GAIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgain.py
193 lines (151 loc) · 5.84 KB
/
gain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# coding=utf-8
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''GAIN function.
Date: 2020/02/28
Reference: J. Yoon, J. Jordon, M. van der Schaar, "GAIN: Missing Data
Imputation using Generative Adversarial Nets," ICML, 2018.
Paper Link: http://proceedings.mlr.press/v80/yoon18a/yoon18a.pdf
Contact: [email protected]
'''
# Necessary packages
#import tensorflow as tf
##IF USING TF 2 use following import to still use TF < 2.0 Functionalities
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
from tqdm import tqdm
from utils import normalization, renormalization, rounding
from utils import xavier_init
from utils import binary_sampler, uniform_sampler, sample_batch_index
def gain (data_x, gain_parameters):
'''Impute missing values in data_x
Args:
- data_x: original data with missing values
- gain_parameters: GAIN network parameters:
- batch_size: Batch size
- hint_rate: Hint rate
- alpha: Hyperparameter
- iterations: Iterations
Returns:
- imputed_data: imputed data
'''
# Define mask matrix
data_m = 1-np.isnan(data_x)
# System parameters
batch_size = gain_parameters['batch_size']
hint_rate = gain_parameters['hint_rate']
alpha = gain_parameters['alpha']
iterations = gain_parameters['iterations']
# Other parameters
no, dim = data_x.shape
# Hidden state dimensions
h_dim = int(dim)
# Normalization
norm_data, norm_parameters = normalization(data_x)
norm_data_x = np.nan_to_num(norm_data, 0)
## GAIN architecture
# Input placeholders
# Data vector
X = tf.placeholder(tf.float32, shape = [None, dim])
# Mask vector
M = tf.placeholder(tf.float32, shape = [None, dim])
# Hint vector
H = tf.placeholder(tf.float32, shape = [None, dim])
# Discriminator variables
D_W1 = tf.Variable(xavier_init([dim*2, h_dim])) # Data + Hint as inputs
D_b1 = tf.Variable(tf.zeros(shape = [h_dim]))
D_W2 = tf.Variable(xavier_init([h_dim, h_dim]))
D_b2 = tf.Variable(tf.zeros(shape = [h_dim]))
D_W3 = tf.Variable(xavier_init([h_dim, dim]))
D_b3 = tf.Variable(tf.zeros(shape = [dim])) # Multi-variate outputs
theta_D = [D_W1, D_W2, D_W3, D_b1, D_b2, D_b3]
#Generator variables
# Data + Mask as inputs (Random noise is in missing components)
G_W1 = tf.Variable(xavier_init([dim*2, h_dim]))
G_b1 = tf.Variable(tf.zeros(shape = [h_dim]))
G_W2 = tf.Variable(xavier_init([h_dim, h_dim]))
G_b2 = tf.Variable(tf.zeros(shape = [h_dim]))
G_W3 = tf.Variable(xavier_init([h_dim, dim]))
G_b3 = tf.Variable(tf.zeros(shape = [dim]))
theta_G = [G_W1, G_W2, G_W3, G_b1, G_b2, G_b3]
## GAIN functions
# Generator
def generator(x,m):
# Concatenate Mask and Data
inputs = tf.concat(values = [x, m], axis = 1)
G_h1 = tf.nn.relu(tf.matmul(inputs, G_W1) + G_b1)
G_h2 = tf.nn.relu(tf.matmul(G_h1, G_W2) + G_b2)
# MinMax normalized output
G_prob = tf.nn.sigmoid(tf.matmul(G_h2, G_W3) + G_b3)
return G_prob
# Discriminator
def discriminator(x, h):
# Concatenate Data and Hint
inputs = tf.concat(values = [x, h], axis = 1)
D_h1 = tf.nn.relu(tf.matmul(inputs, D_W1) + D_b1)
D_h2 = tf.nn.relu(tf.matmul(D_h1, D_W2) + D_b2)
D_logit = tf.matmul(D_h2, D_W3) + D_b3
D_prob = tf.nn.sigmoid(D_logit)
return D_prob
## GAIN structure
# Generator
G_sample = generator(X, M)
# Combine with observed data
Hat_X = X * M + G_sample * (1-M)
# Discriminator
D_prob = discriminator(Hat_X, H)
## GAIN loss
D_loss_temp = -tf.reduce_mean(M * tf.log(D_prob + 1e-8) \
+ (1-M) * tf.log(1. - D_prob + 1e-8))
G_loss_temp = -tf.reduce_mean((1-M) * tf.log(D_prob + 1e-8))
MSE_loss = \
tf.reduce_mean((M * X - M * G_sample)**2) / tf.reduce_mean(M)
D_loss = D_loss_temp
G_loss = G_loss_temp + alpha * MSE_loss
## GAIN solver
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D)
G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)
## Iterations
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# Start Iterations
for it in tqdm(range(iterations)):
# Sample batch
batch_idx = sample_batch_index(no, batch_size)
X_mb = norm_data_x[batch_idx, :]
M_mb = data_m[batch_idx, :]
# Sample random vectors
Z_mb = uniform_sampler(0, 0.01, batch_size, dim)
# Sample hint vectors
H_mb_temp = binary_sampler(hint_rate, batch_size, dim)
H_mb = M_mb * H_mb_temp
# Combine random vectors with observed vectors
X_mb = M_mb * X_mb + (1-M_mb) * Z_mb
_, D_loss_curr = sess.run([D_solver, D_loss_temp],
feed_dict = {M: M_mb, X: X_mb, H: H_mb})
_, G_loss_curr, MSE_loss_curr = \
sess.run([G_solver, G_loss_temp, MSE_loss],
feed_dict = {X: X_mb, M: M_mb, H: H_mb})
## Return imputed data
Z_mb = uniform_sampler(0, 0.01, no, dim)
M_mb = data_m
X_mb = norm_data_x
X_mb = M_mb * X_mb + (1-M_mb) * Z_mb
imputed_data = sess.run([G_sample], feed_dict = {X: X_mb, M: M_mb})[0]
imputed_data = data_m * norm_data_x + (1-data_m) * imputed_data
# Renormalization
imputed_data = renormalization(imputed_data, norm_parameters)
# Rounding
imputed_data = rounding(imputed_data, data_x)
return imputed_data