forked from tinygrad/tinygrad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvits.py
744 lines (705 loc) · 52.7 KB
/
vits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
import json, logging, math, re, sys, time, wave, argparse, numpy as np
from functools import reduce
from pathlib import Path
from typing import List
from extra.utils import download_file
from tinygrad import nn
from tinygrad.helpers import dtypes
from tinygrad.nn.state import torch_load
from tinygrad.tensor import Tensor
from unidecode import unidecode
LRELU_SLOPE = 0.1
class Synthesizer:
def __init__(self, n_vocab, spec_channels, segment_size, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, n_speakers=0, gin_channels=0, use_sdp=True, emotion_embedding=False, **kwargs):
self.n_vocab, self.spec_channels, self.inter_channels, self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout, self.resblock, self.resblock_kernel_sizes, self.resblock_dilation_sizes, self.upsample_rates, self.upsample_initial_channel, self.upsample_kernel_sizes, self.segment_size, self.n_speakers, self.gin_channels, self.use_sdp = n_vocab, spec_channels, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, segment_size, n_speakers, gin_channels, use_sdp
self.enc_p = TextEncoder(n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, emotion_embedding)
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) if use_sdp else DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
if n_speakers > 1: self.emb_g = nn.Embedding(n_speakers, gin_channels)
def infer(self, x, x_lengths, sid=None, noise_scale=1.0, length_scale=1, noise_scale_w=1., max_len=None, emotion_embedding=None, max_y_length_estimate_scale=None):
x, m_p, logs_p, x_mask = self.enc_p.forward(x, x_lengths, emotion_embedding)
g = self.emb_g(sid.reshape(1, 1)).squeeze(1).unsqueeze(-1) if self.n_speakers > 0 else None
logw = self.dp.forward(x, x_mask, g=g, reverse=self.use_sdp, noise_scale=noise_scale_w if self.use_sdp else 1.0)
w_ceil = Tensor.ceil(logw.exp() * x_mask * length_scale)
y_lengths = Tensor.maximum(w_ceil.sum([1, 2]), 1).cast(dtypes.int64)
return self.generate(g, logs_p, m_p, max_len, max_y_length_estimate_scale, noise_scale, w_ceil, x, x_mask, y_lengths)
def generate(self, g, logs_p, m_p, max_len, max_y_length_estimate_scale, noise_scale, w_ceil, x, x_mask, y_lengths):
max_y_length = y_lengths.max().numpy() if max_y_length_estimate_scale is None else max(15, x.shape[-1]) * max_y_length_estimate_scale
y_mask = sequence_mask(y_lengths, max_y_length).unsqueeze(1).cast(x_mask.dtype)
attn_mask = x_mask.unsqueeze(2) * y_mask.unsqueeze(-1)
attn = generate_path(w_ceil, attn_mask)
m_p_2 = attn.squeeze(1).matmul(m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
logs_p_2 = attn.squeeze(1).matmul(logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
z_p = m_p_2 + Tensor.randn(*m_p_2.shape, dtype=m_p_2.dtype) * logs_p_2.exp() * noise_scale
y_mask = y_mask.cast(z_p.dtype)
z = self.flow.forward(z_p, y_mask, g=g, reverse=True)
o = self.dec.forward((z * y_mask)[:, :, :max_len], g=g)
if max_y_length_estimate_scale is not None:
length_scaler = o.shape[-1] / max_y_length
o.realize()
real_max_y_length = y_lengths.max().numpy()
if real_max_y_length > max_y_length:
logging.warning(f"Underestimated max length by {(((real_max_y_length / max_y_length) * 100) - 100):.2f}%, recomputing inference without estimate...")
return self.generate(g, logs_p, m_p, max_len, None, noise_scale, w_ceil, x, x_mask, y_lengths)
if real_max_y_length < max_y_length:
overestimation = ((max_y_length / real_max_y_length) * 100) - 100
logging.info(f"Overestimated max length by {overestimation:.2f}%")
if overestimation > 10: logging.warning("Warning: max length overestimated by more than 10%")
o = o[:, :, :(real_max_y_length * length_scaler).astype(np.int32)]
return o
class StochasticDurationPredictor:
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
filter_channels = in_channels # it needs to be removed from future version.
self.in_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.n_flows, self.gin_channels = in_channels, filter_channels, kernel_size, p_dropout, n_flows, gin_channels
self.log_flow, self.flows = Log(), [ElementwiseAffine(2)]
for _ in range(n_flows):
self.flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.flows.append(Flip())
self.post_pre, self.post_proj = nn.Conv1d(1, filter_channels, 1), nn.Conv1d(filter_channels, filter_channels, 1)
self.post_convs = DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
self.post_flows = [ElementwiseAffine(2)]
for _ in range(4):
self.post_flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3))
self.post_flows.append(Flip())
self.pre, self.proj = nn.Conv1d(in_channels, filter_channels, 1), nn.Conv1d(filter_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
def forward(self, x: Tensor, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
x = self.pre(x.detach())
if g is not None: x = x + self.cond(g.detach())
x = self.convs.forward(x, x_mask)
x = self.proj(x) * x_mask
if not reverse:
flows = self.flows
assert w is not None
log_det_tot_q = 0
h_w = self.post_proj(self.post_convs.forward(self.post_pre(w), x_mask)) * x_mask
e_q = Tensor.randn(w.size(0), 2, w.size(2), dtype=x.dtype).to(device=x.device) * x_mask
z_q = e_q
for flow in self.post_flows:
z_q, log_det_q = flow.forward(z_q, x_mask, g=(x + h_w))
log_det_tot_q += log_det_q
z_u, z1 = z_q.split([1, 1], 1)
u = z_u.sigmoid() * x_mask
z0 = (w - u) * x_mask
log_det_tot_q += Tensor.sum((z_u.logsigmoid() + (-z_u).logsigmoid()) * x_mask, [1,2])
log_q = Tensor.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - log_det_tot_q
log_det_tot = 0
z0, log_det = self.log_flow.forward(z0, x_mask)
log_det_tot += log_det
z = z0.cat(z1, 1)
for flow in flows:
z, log_det = flow.forward(z, x_mask, g=x, reverse=reverse)
log_det_tot = log_det_tot + log_det
nll = Tensor.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - log_det_tot
return nll + log_q # [b]
flows = list(reversed(self.flows))
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
z = Tensor.randn(x.shape[0], 2, x.shape[2], dtype=x.dtype).to(device=x.device) * noise_scale
for flow in flows: z = flow.forward(z, x_mask, g=x, reverse=reverse)
z0, z1 = split(z, [1, 1], 1)
return z0
class DurationPredictor:
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
self.in_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.gin_channels = in_channels, filter_channels, kernel_size, p_dropout, gin_channels
self.conv_1, self.norm_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2), LayerNorm(filter_channels)
self.conv_2, self.norm_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2), LayerNorm(filter_channels)
self.proj = nn.Conv1d(filter_channels, 1, 1)
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, in_channels, 1)
def forward(self, x: Tensor, x_mask, g=None):
x = x.detach()
if g is not None: x = x + self.cond(g.detach())
x = self.conv_1(x * x_mask).relu()
x = self.norm_1(x).dropout(self.p_dropout)
x = self.conv_2(x * x_mask).relu(x)
x = self.norm_2(x).dropout(self.p_dropout)
return self.proj(x * x_mask) * x_mask
class TextEncoder:
def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, emotion_embedding):
self.n_vocab, self.out_channels, self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout = n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
if n_vocab!=0:self.emb = nn.Embedding(n_vocab, hidden_channels)
if emotion_embedding: self.emo_proj = nn.Linear(1024, hidden_channels)
self.encoder = Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout)
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
def forward(self, x: Tensor, x_lengths: Tensor, emotion_embedding=None):
if self.n_vocab!=0: x = (self.emb(x) * math.sqrt(self.hidden_channels))
if emotion_embedding: x = x + self.emo_proj(emotion_embedding).unsqueeze(1)
x = x.transpose(1, -1) # [b, t, h] -transpose-> [b, h, t]
x_mask = sequence_mask(x_lengths, x.shape[2]).unsqueeze(1).cast(x.dtype)
x = self.encoder.forward(x * x_mask, x_mask)
m, logs = split(self.proj(x) * x_mask, self.out_channels, dim=1)
return x, m, logs, x_mask
class ResidualCouplingBlock:
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0):
self.channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.n_flows, self.gin_channels = channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows, gin_channels
self.flows = []
for _ in range(n_flows):
self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
self.flows.append(Flip())
def forward(self, x, x_mask, g=None, reverse=False):
for flow in reversed(self.flows) if reverse else self.flows: x = flow.forward(x, x_mask, g=g, reverse=reverse)
return x
class PosteriorEncoder:
def __init__(self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0):
self.in_channels, self.out_channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.gin_channels = in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels
self.pre, self.proj = nn.Conv1d(in_channels, hidden_channels, 1), nn.Conv1d(hidden_channels, out_channels * 2, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
def forward(self, x, x_lengths, g=None):
x_mask = sequence_mask(x_lengths, x.size(2)).unsqueeze(1).cast(x.dtype)
stats = self.proj(self.enc.forward(self.pre(x) * x_mask, x_mask, g=g)) * x_mask
m, logs = stats.split(self.out_channels, dim=1)
z = (m + Tensor.randn(m.shape, m.dtype) * logs.exp()) * x_mask
return z, m, logs, x_mask
class Generator:
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
self.num_kernels, self.num_upsamples = len(resblock_kernel_sizes), len(upsample_rates)
self.conv_pre = nn.Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
resblock = ResBlock1 if resblock == '1' else ResBlock2
self.ups = [nn.ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)), k, u, padding=(k-u)//2) for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes))]
self.resblocks = []
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock(ch, k, d))
self.conv_post = nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False)
if gin_channels != 0: self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
def forward(self, x: Tensor, g=None):
x = self.conv_pre(x)
if g is not None: x = x + self.cond(g)
for i in range(self.num_upsamples):
x, xs = self.ups[i](x.leakyrelu(LRELU_SLOPE)), None
for j in range(self.num_kernels):
if xs is None: xs = self.resblocks[i * self.num_kernels + j].forward(x)
else: xs += self.resblocks[i * self.num_kernels + j].forward(x)
x = xs / self.num_kernels
return self.conv_post(x.leakyrelu()).tanh()
class LayerNorm(nn.LayerNorm):
def __init__(self, channels, eps=1e-5): super().__init__(channels, eps, elementwise_affine=True)
def forward(self, x: Tensor): return self.__call__(x.transpose(1, -1)).transpose(1, -1)
class WN:
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
assert (kernel_size % 2 == 1)
self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.gin_channels, self.p_dropout = hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels, p_dropout
self.in_layers, self.res_skip_layers = [], []
if gin_channels != 0: self.cond_layer = nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
for i in range(n_layers):
dilation = dilation_rate ** i
self.in_layers.append(nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size, dilation=dilation, padding=int((kernel_size * dilation - dilation) / 2)))
self.res_skip_layers.append(nn.Conv1d(hidden_channels, 2 * hidden_channels if i < n_layers - 1 else hidden_channels, 1))
def forward(self, x, x_mask, g=None, **kwargs):
output = Tensor.zeros_like(x)
if g is not None: g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
else:
g_l = Tensor.zeros_like(x_in)
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l, self.hidden_channels)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
x = (x + res_skip_acts[:, :self.hidden_channels, :]) * x_mask
output = output + res_skip_acts[:, self.hidden_channels:, :]
else:
output = output + res_skip_acts
return output * x_mask
class ResBlock1:
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
self.convs1 = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[i], padding=get_padding(kernel_size, dilation[i])) for i in range(3)]
self.convs2 = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1)) for _ in range(3)]
def forward(self, x: Tensor, x_mask=None):
for c1, c2 in zip(self.convs1, self.convs2):
xt = x.leakyrelu(LRELU_SLOPE)
xt = c1(xt if x_mask is None else xt * x_mask).leakyrelu(LRELU_SLOPE)
x = c2(xt if x_mask is None else xt * x_mask) + x
return x if x_mask is None else x * x_mask
class ResBlock2:
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
self.convs = [nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[i], padding=get_padding(kernel_size, dilation[i])) for i in range(2)]
def forward(self, x, x_mask=None):
for c in self.convs:
xt = x.leaky_relu(LRELU_SLOPE)
xt = c(xt if x_mask is None else xt * x_mask)
x = xt + x
return x if x_mask is None else x * x_mask
class DDSConv: # Dilated and Depth-Separable Convolution
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
self.channels, self.kernel_size, self.n_layers, self.p_dropout = channels, kernel_size, n_layers, p_dropout
self.convs_sep, self.convs_1x1, self.norms_1, self.norms_2 = [], [], [], []
for i in range(n_layers):
dilation = kernel_size ** i
padding = (kernel_size * dilation - dilation) // 2
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding))
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
self.norms_1.append(LayerNorm(channels))
self.norms_2.append(LayerNorm(channels))
def forward(self, x, x_mask, g=None):
if g is not None: x = x + g
for i in range(self.n_layers):
y = self.convs_sep[i](x * x_mask)
y = self.norms_1[i].forward(y).gelu()
y = self.convs_1x1[i](y)
y = self.norms_2[i].forward(y).gelu()
x = x + y.dropout(self.p_dropout)
return x * x_mask
class ConvFlow:
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
self.in_channels, self.filter_channels, self.kernel_size, self.n_layers, self.num_bins, self.tail_bound = in_channels, filter_channels, kernel_size, n_layers, num_bins, tail_bound
self.half_channels = in_channels // 2
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = split(x, [self.half_channels] * 2, 1)
h = self.proj(self.convs.forward(self.pre(x0), x_mask, g=g)) * x_mask
b, c, t = x0.shape
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
un_normalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
un_normalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
un_normalized_derivatives = h[..., 2 * self.num_bins:]
x1, log_abs_det = piecewise_rational_quadratic_transform(x1, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=reverse, tails='linear', tail_bound=self.tail_bound)
x = x0.cat(x1, dim=1) * x_mask
return x if reverse else (x, Tensor.sum(log_abs_det * x_mask, [1,2]))
class ResidualCouplingLayer:
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False):
assert channels % 2 == 0, "channels should be divisible by 2"
self.channels, self.hidden_channels, self.kernel_size, self.dilation_rate, self.n_layers, self.mean_only = channels, hidden_channels, kernel_size, dilation_rate, n_layers, mean_only
self.half_channels = channels // 2
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
def forward(self, x, x_mask, g=None, reverse=False):
x0, x1 = split(x, [self.half_channels] * 2, 1)
stats = self.post(self.enc.forward(self.pre(x0) * x_mask, x_mask, g=g)) * x_mask
if not self.mean_only:
m, logs = split(stats, [self.half_channels] * 2, 1)
else:
m = stats
logs = Tensor.zeros_like(m)
if not reverse: return x0.cat((m + x1 * logs.exp() * x_mask), dim=1)
return x0.cat(((x1 - m) * (-logs).exp() * x_mask), dim=1)
class Log:
def forward(self, x : Tensor, x_mask, reverse=False):
if not reverse:
y = x.maximum(1e-5).log() * x_mask
return y, (-y).sum([1, 2])
return x.exp() * x_mask
class Flip:
def forward(self, x: Tensor, *args, reverse=False, **kwargs):
return x.flip([1]) if reverse else (x.flip([1]), Tensor.zeros(x.shape[0], dtype=x.dtype).to(device=x.device))
class ElementwiseAffine:
def __init__(self, channels): self.m, self.logs = Tensor.zeros(channels, 1), Tensor.zeros(channels, 1)
def forward(self, x, x_mask, reverse=False, **kwargs): # x if reverse else y, logdet
return (x - self.m) * Tensor.exp(-self.logs) * x_mask if reverse \
else ((self.m + Tensor.exp(self.logs) * x) * x_mask, Tensor.sum(self.logs * x_mask, [1, 2]))
class MultiHeadAttention:
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
assert channels % n_heads == 0
self.channels, self.out_channels, self.n_heads, self.p_dropout, self.window_size, self.heads_share, self.block_length, self.proximal_bias, self.proximal_init = channels, out_channels, n_heads, p_dropout, window_size, heads_share, block_length, proximal_bias, proximal_init
self.attn, self.k_channels = None, channels // n_heads
self.conv_q, self.conv_k, self.conv_v = [nn.Conv1d(channels, channels, 1) for _ in range(3)]
self.conv_o = nn.Conv1d(channels, out_channels, 1)
if window_size is not None: self.emb_rel_k, self.emb_rel_v = [Tensor.randn(1 if heads_share else n_heads, window_size * 2 + 1, self.k_channels) * (self.k_channels ** -0.5) for _ in range(2)]
def forward(self, x, c, attn_mask=None):
q, k, v = self.conv_q(x), self.conv_k(c), self.conv_v(c)
x, self.attn = self.attention(q, k, v, mask=attn_mask)
return self.conv_o(x)
def attention(self, query: Tensor, key: Tensor, value: Tensor, mask=None):# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s, t_t = key.shape[0], key.shape[1], key.shape[2], query.shape[2]
query = query.reshape(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.reshape(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.reshape(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = (query / math.sqrt(self.k_channels)) @ key.transpose(-2, -1)
if self.window_size is not None:
assert t_s == t_t, "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
scores = scores + self._relative_position_to_absolute_position(rel_logits)
if mask is not None:
scores = Tensor.where(mask, scores, -1e4)
if self.block_length is not None:
assert t_s == t_t, "Local attention is only available for self-attention."
scores = Tensor.where(Tensor.ones_like(scores).triu(-self.block_length).tril(self.block_length), scores, -1e4)
p_attn = scores.softmax(axis=-1) # [b, n_h, t_t, t_s]
output = p_attn.matmul(value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
output = output.transpose(2, 3).contiguous().reshape(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y): return x.matmul(y.unsqueeze(0)) # x: [b, h, l, m], y: [h or 1, m, d], ret: [b, h, l, d]
def _matmul_with_relative_keys(self, x, y): return x.matmul(y.unsqueeze(0).transpose(-2, -1)) # x: [b, h, l, d], y: [h or 1, m, d], re, : [b, h, l, m]
def _get_relative_embeddings(self, relative_embeddings, length):
pad_length, slice_start_position = max(length - (self.window_size + 1), 0), max((self.window_size + 1) - length, 0)
padded_relative_embeddings = relative_embeddings if pad_length <= 0\
else relative_embeddings.pad(convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
return padded_relative_embeddings[:, slice_start_position:(slice_start_position + 2 * length - 1)] #used_relative_embeddings
def _relative_position_to_absolute_position(self, x: Tensor): # x: [b, h, l, 2*l-1] -> [b, h, l, l]
batch, heads, length, _ = x.shape
x = x.pad(convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
x_flat = x.reshape([batch, heads, length * 2 * length]).pad(convert_pad_shape([[0,0],[0,0],[0,length-1]]))
return x_flat.reshape([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
def _absolute_position_to_relative_position(self, x: Tensor): # x: [b, h, l, l] -> [b, h, l, 2*l-1]
batch, heads, length, _ = x.shape
x = x.pad(convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
x_flat = x.reshape([batch, heads, length**2 + length*(length -1)]).pad(convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
return x_flat.reshape([batch, heads, length, 2*length])[:,:,:,1:]
class FFN:
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
self.in_channels, self.out_channels, self.filter_channels, self.kernel_size, self.p_dropout, self.activation, self.causal = in_channels, out_channels, filter_channels, kernel_size, p_dropout, activation, causal
self.padding = self._causal_padding if causal else self._same_padding
self.conv_1, self.conv_2 = nn.Conv1d(in_channels, filter_channels, kernel_size), nn.Conv1d(filter_channels, out_channels, kernel_size)
def forward(self, x, x_mask):
x = self.conv_1(self.padding(x * x_mask))
x = x * (1.702 * x).sigmoid() if self.activation == "gelu" else x.relu()
return self.conv_2(self.padding(x.dropout(self.p_dropout) * x_mask)) * x_mask
def _causal_padding(self, x):return x if self.kernel_size == 1 else x.pad(convert_pad_shape([[0, 0], [0, 0], [self.kernel_size - 1, 0]]))
def _same_padding(self, x): return x if self.kernel_size == 1 else x.pad(convert_pad_shape([[0, 0], [0, 0], [(self.kernel_size - 1) // 2, self.kernel_size // 2]]))
class Encoder:
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
self.hidden_channels, self.filter_channels, self.n_heads, self.n_layers, self.kernel_size, self.p_dropout, self.window_size = hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, window_size
self.attn_layers, self.norm_layers_1, self.ffn_layers, self.norm_layers_2 = [], [], [], []
for _ in range(n_layers):
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
self.norm_layers_1.append(LayerNorm(hidden_channels))
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
self.norm_layers_2.append(LayerNorm(hidden_channels))
def forward(self, x, x_mask):
attn_mask, x = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1), x * x_mask
for i in range(self.n_layers):
y = self.attn_layers[i].forward(x, x, attn_mask).dropout(self.p_dropout)
x = self.norm_layers_1[i].forward(x + y)
y = self.ffn_layers[i].forward(x, x_mask).dropout(self.p_dropout)
x = self.norm_layers_2[i].forward(x + y)
return x * x_mask
DEFAULT_MIN_BIN_WIDTH, DEFAULT_MIN_BIN_HEIGHT, DEFAULT_MIN_DERIVATIVE = 1e-3, 1e-3, 1e-3
def piecewise_rational_quadratic_transform(inputs, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=False, tails=None, tail_bound=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
if tails is None: spline_fn, spline_kwargs = rational_quadratic_spline, {}
else: spline_fn, spline_kwargs = unconstrained_rational_quadratic_spline, {'tails': tails, 'tail_bound': tail_bound}
return spline_fn(inputs=inputs, un_normalized_widths=un_normalized_widths, un_normalized_heights=un_normalized_heights, un_normalized_derivatives=un_normalized_derivatives, inverse=inverse, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative, **spline_kwargs)
def unconstrained_rational_quadratic_spline(inputs, un_normalized_widths, un_normalized_heights, un_normalized_derivatives, inverse=False, tails='linear', tail_bound=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
if not tails == 'linear': raise RuntimeError('{} tails are not implemented.'.format(tails))
constant = np.log(np.exp(1 - min_derivative) - 1)
un_normalized_derivatives = cat_lr(un_normalized_derivatives, constant, constant)
output, log_abs_det = rational_quadratic_spline(inputs=inputs.squeeze(dim=0).squeeze(dim=0), unnormalized_widths=un_normalized_widths.squeeze(dim=0).squeeze(dim=0), unnormalized_heights=un_normalized_heights.squeeze(dim=0).squeeze(dim=0), unnormalized_derivatives=un_normalized_derivatives.squeeze(dim=0).squeeze(dim=0), inverse=inverse, left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative)
return output.unsqueeze(dim=0).unsqueeze(dim=0), log_abs_det.unsqueeze(dim=0).unsqueeze(dim=0)
def rational_quadratic_spline(inputs: Tensor, unnormalized_widths: Tensor, unnormalized_heights: Tensor, unnormalized_derivatives: Tensor, inverse=False, left=0., right=1., bottom=0., top=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE):
num_bins = unnormalized_widths.shape[-1]
if min_bin_width * num_bins > 1.0: raise ValueError('Minimal bin width too large for the number of bins')
if min_bin_height * num_bins > 1.0: raise ValueError('Minimal bin height too large for the number of bins')
widths = min_bin_width + (1 - min_bin_width * num_bins) * unnormalized_widths.softmax(axis=-1)
cum_widths = cat_lr(((right - left) * widths[..., :-1].cumsum(axis=1) + left), left, right + 1e-6 if not inverse else right)
widths = cum_widths[..., 1:] - cum_widths[..., :-1]
derivatives = min_derivative + (unnormalized_derivatives.exp()+1).log()
heights = min_bin_height + (1 - min_bin_height * num_bins) * unnormalized_heights.softmax(axis=-1)
cum_heights = cat_lr(((top - bottom) * heights[..., :-1].cumsum(axis=1) + bottom), bottom, top + 1e-6 if inverse else top)
heights = cum_heights[..., 1:] - cum_heights[..., :-1]
bin_idx = ((inputs[..., None] >= (cum_heights if inverse else cum_widths)).sum(axis=-1) - 1)[..., None]
input_cum_widths = gather(cum_widths, bin_idx, axis=-1)[..., 0]
input_bin_widths = gather(widths, bin_idx, axis=-1)[..., 0]
input_cum_heights = gather(cum_heights, bin_idx, axis=-1)[..., 0]
input_delta = gather(heights / widths, bin_idx, axis=-1)[..., 0]
input_derivatives = gather(derivatives, bin_idx, axis=-1)[..., 0]
input_derivatives_plus_one = gather(derivatives[..., 1:], bin_idx, axis=-1)[..., 0]
input_heights = gather(heights, bin_idx, axis=-1)[..., 0]
if inverse:
a = ((inputs - input_cum_heights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + input_heights * (input_delta - input_derivatives))
b = (input_heights * input_derivatives - (inputs - input_cum_heights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta))
c = - input_delta * (inputs - input_cum_heights)
discriminant = b.square() - 4 * a * c
# assert (discriminant.numpy() >= 0).all()
root = (2 * c) / (-b - discriminant.sqrt())
theta_one_minus_theta = root * (1 - root)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
derivative_numerator = input_delta.square() * (input_derivatives_plus_one * root.square() + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - root).square())
return root * input_bin_widths + input_cum_widths, -(derivative_numerator.log() - 2 * denominator.log())
theta = (inputs - input_cum_widths) / input_bin_widths
theta_one_minus_theta = theta * (1 - theta)
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta)
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - theta).pow(2))
return input_cum_heights + numerator / denominator, derivative_numerator.log() - 2 * denominator.log()
def sequence_mask(length: Tensor, max_length): return Tensor.arange(max_length, dtype=length.dtype, device=length.device).unsqueeze(0).__lt__(length.unsqueeze(1))
def generate_path(duration: Tensor, mask: Tensor): # duration: [b, 1, t_x], mask: [b, 1, t_y, t_x]
b, _, t_y, t_x = mask.shape
path = sequence_mask(duration.cumsum(axis=2).reshape(b * t_x), t_y).cast(mask.dtype).reshape(b, t_x, t_y)
path = path - path.pad(convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
return path.unsqueeze(1).transpose(2, 3) * mask
def fused_add_tanh_sigmoid_multiply(input_a: Tensor, input_b: Tensor, n_channels: int):
n_channels_int, in_act = n_channels, input_a + input_b
t_act, s_act = in_act[:, :n_channels_int, :].tanh(), in_act[:, n_channels_int:, :].sigmoid()
return t_act * s_act
def cat_lr(t, left, right): return Tensor.full(get_shape(t), left).cat(t, dim=-1).cat(Tensor.full(get_shape(t), right), dim=-1)
def get_shape(tensor):
(shape := list(tensor.shape))[-1] = 1
return tuple(shape)
def convert_pad_shape(pad_shape): return tuple(tuple(x) for x in pad_shape)
def get_padding(kernel_size, dilation=1): return int((kernel_size*dilation - dilation)/2)
def split(tensor, split_sizes, dim=0): # if split_sizes is an integer, convert it to a tuple of size split_sizes elements
if isinstance(split_sizes, int): split_sizes = (split_sizes,) * (tensor.shape[dim] // split_sizes)
assert sum(split_sizes) == tensor.shape[
dim], "Sum of split_sizes must equal the dimension size of tensor along the given dimension."
start, slices = 0, []
for size in split_sizes:
slice_range = [(start, start + size) if j == dim else None for j in range(len(tensor.shape))]
slices.append(slice_range)
start += size
return [tensor.slice(s) for s in slices]
def gather(x, indices, axis):
indices = (indices < 0).where(indices + x.shape[axis], indices).transpose(ax1=axis, ax2=0)
permute_args = list(range(x.ndim))
permute_args[0], permute_args[axis] = permute_args[axis], permute_args[0]
permute_args.append(permute_args.pop(0))
x = x.permute(*permute_args)
reshape_arg = [1] * x.ndim + [x.shape[-1]]
return ((indices.unsqueeze(indices.ndim).expand(*indices.shape, x.shape[-1]) ==
Tensor.arange(x.shape[-1]).reshape(*reshape_arg).expand(*indices.shape, x.shape[-1])) * x).sum(indices.ndim).transpose(ax1=0, ax2=axis)
def norm_except_dim(v, dim):
if dim == -1: return np.linalg.norm(v)
if dim == 0:
(output_shape := [1] * v.ndim)[0] = v.shape[0]
return np.linalg.norm(v.reshape(v.shape[0], -1), axis=1).reshape(output_shape)
if dim == v.ndim - 1:
(output_shape := [1] * v.ndim)[-1] = v.shape[-1]
return np.linalg.norm(v.reshape(-1, v.shape[-1]), axis=0).reshape(output_shape)
transposed_v = np.transpose(v, (dim,) + tuple(i for i in range(v.ndim) if i != dim))
return np.transpose(norm_except_dim(transposed_v, 0), (dim,) + tuple(i for i in range(v.ndim) if i != dim))
def weight_norm(v: Tensor, g: Tensor, dim):
v, g = v.numpy(), g.numpy()
return Tensor(v * (g / norm_except_dim(v, dim)))
# HPARAMS LOADING
def get_hparams_from_file(path):
with open(path, "r") as f:
data = f.read()
return HParams(**json.loads(data))
class HParams:
def __init__(self, **kwargs):
for k, v in kwargs.items(): self[k] = v if type(v) != dict else HParams(**v)
def keys(self): return self.__dict__.keys()
def items(self): return self.__dict__.items()
def values(self): return self.__dict__.values()
def __len__(self): return len(self.__dict__)
def __getitem__(self, key): return getattr(self, key)
def __setitem__(self, key, value): return setattr(self, key, value)
def __contains__(self, key): return key in self.__dict__
def __repr__(self): return self.__dict__.__repr__()
# MODEL LOADING
def load_model(symbols, hps, model) -> Synthesizer:
weights_path = model[1]
download_if_not_present(weights_path, model[3])
net_g = Synthesizer(len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers = hps.data.n_speakers, **hps.model)
_ = load_checkpoint(weights_path, net_g, None)
return net_g
def load_checkpoint(checkpoint_path, model: Synthesizer, optimizer=None, skip_list=[]):
assert Path(checkpoint_path).is_file()
start_time = time.time()
checkpoint_dict = torch_load(checkpoint_path)
iteration, learning_rate = checkpoint_dict['iteration'], checkpoint_dict['learning_rate']
if optimizer: optimizer.load_state_dict(checkpoint_dict['optimizer'])
saved_state_dict = checkpoint_dict['model']
weight_g, weight_v, parent = None, None, None
for key, v in saved_state_dict.items():
if any(layer in key for layer in skip_list): continue
try:
obj, skip = model, False
for k in key.split('.'):
if k.isnumeric(): obj = obj[int(k)]
elif isinstance(obj, dict): obj = obj[k]
else:
if isinstance(obj, (LayerNorm, nn.LayerNorm)) and k in ["gamma", "beta"]:
k = "weight" if k == "gamma" else "bias"
elif k in ["weight_g", "weight_v"]:
parent, skip = obj, True
if k == "weight_g": weight_g = v
else: weight_v = v
if not skip: obj = getattr(obj, k)
if weight_g and weight_v:
setattr(obj, "weight_g", weight_g.numpy())
setattr(obj, "weight_v", weight_v.numpy())
obj, v = getattr(parent, "weight"), weight_norm(weight_v, weight_g, 0)
weight_g, weight_v, parent, skip = None, None, None, False
if not skip and obj.shape == v.shape: obj.assign(v.to(obj.device))
elif not skip: logging.error(f"MISMATCH SHAPE IN {key}, {obj.shape} {v.shape}")
except Exception as e: raise e
logging.info(f"Loaded checkpoint '{checkpoint_path}' (iteration {iteration}) in {time.time() - start_time:.4f}s")
return model, optimizer, learning_rate, iteration
def download_if_not_present(file_path: Path, url: str):
if not file_path.is_file():
logging.info(f"Did not find {file_path.as_posix()}, downloading...")
download_file(url, file_path)
return file_path
# Used for cleaning input text and mapping to symbols
class TextMapper: # Based on https://github.com/keithito/tacotron
def __init__(self, symbols, apply_cleaners=True):
self.apply_cleaners, self.symbols, self._inflect = apply_cleaners, symbols, None
self._symbol_to_id, _id_to_symbol = {s: i for i, s in enumerate(symbols)}, {i: s for i, s in enumerate(symbols)}
self._whitespace_re, self._abbreviations = re.compile(r'\s+'), [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [('mrs', 'misess'), ('mr', 'mister'), ('dr', 'doctor'), ('st', 'saint'), ('co', 'company'), ('jr', 'junior'), ('maj', 'major'), ('gen', 'general'), ('drs', 'doctors'), ('rev', 'reverend'), ('lt', 'lieutenant'), ('hon', 'honorable'), ('sgt', 'sergeant'), ('capt', 'captain'), ('esq', 'esquire'), ('ltd', 'limited'), ('col', 'colonel'), ('ft', 'fort'), ]]
def text_to_sequence(self, text, cleaner_names):
if self.apply_cleaners:
for name in cleaner_names:
cleaner = getattr(self, name)
if not cleaner: raise ModuleNotFoundError('Unknown cleaner: %s' % name)
text = cleaner(text)
else: text = text.strip()
return [self._symbol_to_id[symbol] for symbol in text]
def get_text(self, text, add_blank=False, cleaners=('english_cleaners',)):
text_norm = self.text_to_sequence(text, cleaners)
return Tensor(self.intersperse(text_norm, 0) if add_blank else text_norm, dtype=dtypes.int64)
def intersperse(self, lst, item):
(result := [item] * (len(lst) * 2 + 1))[1::2] = lst
return result
def filter_oov(self, text): return "".join(list(filter(lambda x: x in self._symbol_to_id, text)))
def base_english_cleaners(self, text, preserve_punctuation=False, with_stress=False):
from phonemizer import phonemize
return self.collapse_whitespace(phonemize(self.expand_abbreviations(unidecode(text.lower())), language='en-us', backend='espeak', strip=True, preserve_punctuation=preserve_punctuation, with_stress=with_stress))
def english_cleaners(self, text): return self.base_english_cleaners(text)
def english_cleaners2(self, text): return self.base_english_cleaners(text, preserve_punctuation=True, with_stress=True)
def transliteration_cleaners(self, text): return self.collapse_whitespace(unidecode(text.lower()))
def cjke_cleaners(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_ipa2(text).replace('ɑ', 'a').replace('ɔ', 'o').replace('ɛ', 'e').replace('ɪ', 'i').replace('ʊ', 'u')))
def cjke_cleaners2(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_ipa2(text)))
def cjks_cleaners(self, text): return re.sub(r'([^\.,!\?\-…~])$', r'\1.', re.sub(r'\s+$', '', self.english_to_lazy_ipa(text)))
def english_to_ipa2(self, text):
_ipa_to_ipa2 = [(re.compile('%s' % x[0]), x[1]) for x in [ ('r', 'ɹ'), ('ʤ', 'dʒ'), ('ʧ', 'tʃ')]]
return reduce(lambda t, rx: re.sub(rx[0], rx[1], t), _ipa_to_ipa2, self.mark_dark_l(self.english_to_ipa(text))).replace('...', '…')
def mark_dark_l(self, text): return re.sub(r'l([^aeiouæɑɔəɛɪʊ ]*(?: |$))', lambda x: 'ɫ' + x.group(1), text)
def english_to_ipa(self, text):
import eng_to_ipa as ipa
return self.collapse_whitespace(ipa.convert(self.normalize_numbers(self.expand_abbreviations(unidecode(text).lower()))))
def english_to_lazy_ipa(self, text):
_lazy_ipa = [(re.compile('%s' % x[0]), x[1]) for x in [('r', 'ɹ'), ('æ', 'e'), ('ɑ', 'a'), ('ɔ', 'o'), ('ð', 'z'), ('θ', 's'), ('ɛ', 'e'), ('ɪ', 'i'), ('ʊ', 'u'), ('ʒ', 'ʥ'), ('ʤ', 'ʥ'), ('ˈ', '↓')]]
return reduce(lambda t, rx: re.sub(rx[0], rx[1], t), _lazy_ipa, self.english_to_ipa(text))
def expand_abbreviations(self, text): return reduce(lambda t, abbr: re.sub(abbr[0], abbr[1], t), self._abbreviations, text)
def collapse_whitespace(self, text): return re.sub(self._whitespace_re, ' ', text)
def normalize_numbers(self, text):
import inflect
self._inflect = inflect.engine()
text = re.sub(re.compile(r'([0-9][0-9\,]+[0-9])'), self._remove_commas, text)
text = re.sub(re.compile(r'£([0-9\,]*[0-9]+)'), r'\1 pounds', text)
text = re.sub(re.compile(r'\$([0-9\.\,]*[0-9]+)'), self._expand_dollars, text)
text = re.sub(re.compile(r'([0-9]+\.[0-9]+)'), self._expand_decimal_point, text)
text = re.sub(re.compile(r'[0-9]+(st|nd|rd|th)'), self._expand_ordinal, text)
text = re.sub(re.compile(r'[0-9]+'), self._expand_number, text)
return text
def _remove_commas(self, m): return m.group(1).replace(',', '') # george won't like this
def _expand_dollars(self, m):
match = m.group(1)
parts = match.split('.')
if len(parts) > 2: return match + ' dollars' # Unexpected format
dollars, cents = int(parts[0]) if parts[0] else 0, int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents: return '%s %s, %s %s' % (dollars, 'dollar' if dollars == 1 else 'dollars', cents, 'cent' if cents == 1 else 'cents')
if dollars: return '%s %s' % (dollars, 'dollar' if dollars == 1 else 'dollars')
if cents: return '%s %s' % (cents, 'cent' if cents == 1 else 'cents')
return 'zero dollars'
def _expand_decimal_point(self, m): return m.group(1).replace('.', ' point ')
def _expand_ordinal(self, m): return self._inflect.number_to_words(m.group(0))
def _expand_number(self, _inflect, m):
num = int(m.group(0))
if 1000 < num < 3000:
if num == 2000: return 'two thousand'
if 2000 < num < 2010: return 'two thousand ' + self._inflect.number_to_words(num % 100)
if num % 100 == 0: return self._inflect.number_to_words(num // 100) + ' hundred'
return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
return self._inflect.number_to_words(num, andword='')
#########################################################################################
# PAPER: https://arxiv.org/abs/2106.06103
# CODE: https://github.com/jaywalnut310/vits/tree/main
#########################################################################################
# INSTALLATION: this is based on default config, dependencies are for preprocessing.
# vctk, ljs | pip3 install unidecode phonemizer | phonemizer requires [eSpeak](https://espeak.sourceforge.net) backend to be installed on your system
# mmts-tts | pip3 install unidecode |
# uma_trilingual, cjks, voistock | pip3 install unidecode inflect eng_to_ipa |
#########################################################################################
# Some good speakers to try out, there may be much better ones, I only tried out a few:
# male vctk 1 | --model_to_use vctk --speaker_id 2
# male vctk 2 | --model_to_use vctk --speaker_id 6
# anime lady 1 | --model_to_use uma_trilingual --speaker_id 36
# anime lady 2 | --model_to_use uma_trilingual --speaker_id 121
#########################################################################################
VITS_PATH = Path(__file__).parents[1] / "weights/VITS/"
MODELS = { # config_path, weights_path, config_url, weights_url
"ljs": (VITS_PATH / "config_ljs.json", VITS_PATH / "pretrained_ljs.pth", "https://raw.githubusercontent.com/jaywalnut310/vits/main/configs/ljs_base.json", "https://drive.google.com/uc?export=download&id=1q86w74Ygw2hNzYP9cWkeClGT5X25PvBT&confirm=t"),
"vctk": (VITS_PATH / "config_vctk.json", VITS_PATH / "pretrained_vctk.pth", "https://raw.githubusercontent.com/jaywalnut310/vits/main/configs/vctk_base.json", "https://drive.google.com/uc?export=download&id=11aHOlhnxzjpdWDpsz1vFDCzbeEfoIxru&confirm=t"),
"mmts-tts": (VITS_PATH / "config_mmts-tts.json", VITS_PATH / "pretrained_mmts-tts.pth", "https://huggingface.co/facebook/mms-tts/raw/main/full_models/eng/config.json", "https://huggingface.co/facebook/mms-tts/resolve/main/full_models/eng/G_100000.pth"),
"uma_trilingual": (VITS_PATH / "config_uma_trilingual.json", VITS_PATH / "pretrained_uma_trilingual.pth", "https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/raw/main/configs/uma_trilingual.json", "https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/resolve/main/pretrained_models/G_trilingual.pth"),
"cjks": (VITS_PATH / "config_cjks.json", VITS_PATH / "pretrained_cjks.pth", "https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/14/config.json", "https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/14/model.pth"),
"voistock": (VITS_PATH / "config_voistock.json", VITS_PATH / "pretrained_voistock.pth", "https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/15/config.json", "https://huggingface.co/spaces/skytnt/moe-tts/resolve/main/saved_model/15/model.pth"),
}
Y_LENGTH_ESTIMATE_SCALARS = {"ljs": 2.8, "vctk": 1.74, "mmts-tts": 1.9, "uma_trilingual": 2.3, "cjks": 3.3, "voistock": 3.1}
if __name__ == '__main__':
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
parser = argparse.ArgumentParser()
parser.add_argument("--model_to_use", default="vctk", help="Specify the model to use. Default is 'vctk'.")
parser.add_argument("--speaker_id", type=int, default=6, help="Specify the speaker ID. Default is 6.")
parser.add_argument("--out_path", default=None, help="Specify the full output path. Overrides the --out_dir and --name parameter.")
parser.add_argument("--out_dir", default=str(Path(__file__).parents[1] / "temp"), help="Specify the output path.")
parser.add_argument("--base_name", default="test", help="Specify the base of the output file name. Default is 'test'.")
parser.add_argument("--text_to_synthesize", default="""Hello person. If the code you are contributing isn't some of the highest quality code you've written in your life, either put in the effort to make it great, or don't bother.""", help="Specify the text to synthesize. Default is a greeting message.")
parser.add_argument("--noise_scale", type=float, default=0.667, help="Specify the noise scale. Default is 0.667.")
parser.add_argument("--noise_scale_w", type=float, default=0.8, help="Specify the noise scale w. Default is 0.8.")
parser.add_argument("--length_scale", type=float, default=1, help="Specify the length scale. Default is 1.")
parser.add_argument("--seed", type=int, default=1337, help="Specify the seed (set to None if no seed). Default is 1337.")
parser.add_argument("--num_channels", type=int, default=1, help="Specify the number of audio output channels. Default is 1.")
parser.add_argument("--sample_width", type=int, default=2, help="Specify the number of bytes per sample, adjust if necessary. Default is 2.")
parser.add_argument("--emotion_path", type=str, default=None, help="Specify the path to emotion reference.")
parser.add_argument("--estimate_max_y_length", type=str, default=False, help="If true, overestimate the output length and then trim it to the correct length, to prevent premature realization, much more performant for larger inputs, for smaller inputs not so much. Default is False.")
args = parser.parse_args()
model_config = MODELS[args.model_to_use]
# Load the hyperparameters from the config file.
config_path = model_config[0]
download_if_not_present(config_path, model_config[2])
hps = get_hparams_from_file(config_path)
# If model has multiple speakers, validate speaker id and retrieve name if available.
model_has_multiple_speakers = hps.data.n_speakers > 0
if model_has_multiple_speakers:
logging.info(f"Model has {hps.data.n_speakers} speakers")
if args.speaker_id >= hps.data.n_speakers: raise ValueError(f"Speaker ID {args.speaker_id} is invalid for this model.")
speaker_name = "?"
if hps.__contains__("speakers"): # maps speaker ids to names
speakers = hps.speakers
if isinstance(speakers, List): speakers = {speaker: i for i, speaker in enumerate(speakers)}
speaker_name = next((key for key, value in speakers.items() if value == args.speaker_id), None)
logging.info(f"You selected speaker {args.speaker_id} (name: {speaker_name})")
# Load emotions if any. TODO: find an english model with emotions, this is untested atm.
emotion_embedding = None
if args.emotion_path is not None:
if args.emotion_path.endswith(".npy"): emotion_embedding = Tensor(np.load(args.emotion_path), dtype=dtypes.int64).unsqueeze(0)
else: raise ValueError("Emotion path must be a .npy file.")
# Load symbols, instantiate TextMapper and clean the text.
if hps.__contains__("symbols"): symbols = hps.symbols
elif args.model_to_use == "mmts-tts": symbols = [x.replace("\n", "") for x in open(download_if_not_present(VITS_PATH / "vocab_mmts-tts.txt", "https://huggingface.co/facebook/mms-tts/raw/main/full_models/eng/vocab.txt"), encoding="utf-8").readlines()]
else: symbols = ['_'] + list(';:,.!?¡¿—…"«»“” ') + list('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz') + list("ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ")
text_mapper = TextMapper(apply_cleaners=True, symbols=symbols)
# Load the model.
Tensor.no_grad = True
if args.seed is not None:
Tensor.manual_seed(args.seed)
np.random.seed(args.seed)
net_g = load_model(text_mapper.symbols, hps, model_config)
logging.debug(f"Loaded model with hps: {hps}")
# Convert the input text to a tensor.
text_to_synthesize = args.text_to_synthesize
if args.model_to_use == "mmts-tts": text_to_synthesize = text_mapper.filter_oov(text_to_synthesize.lower())
stn_tst = text_mapper.get_text(text_to_synthesize, hps.data.add_blank, hps.data.text_cleaners)
logging.debug(f"Converted input text to tensor \"{text_to_synthesize}\" -> Tensor({stn_tst.shape}): {stn_tst.numpy()}")
x_tst, x_tst_lengths = stn_tst.unsqueeze(0), Tensor([stn_tst.shape[0]], dtype=dtypes.int64)
sid = Tensor([args.speaker_id], dtype=dtypes.int64) if model_has_multiple_speakers else None
# Perform inference.
start_time = time.time()
audio_tensor = net_g.infer(x_tst, x_tst_lengths, sid, args.noise_scale, args.length_scale, args.noise_scale_w, emotion_embedding=emotion_embedding,
max_y_length_estimate_scale=Y_LENGTH_ESTIMATE_SCALARS[args.model_to_use] if args.estimate_max_y_length else None)[0, 0].realize()
logging.info(f"Inference took {(time.time() - start_time):.2f}s")
# Save the audio output.
audio_data = (np.clip(audio_tensor.numpy(), -1.0, 1.0) * 32767).astype(np.int16)
out_path = Path(args.out_path or Path(args.out_dir)/f"{args.model_to_use}{f'_sid_{args.speaker_id}' if model_has_multiple_speakers else ''}_{args.base_name}.wav")
out_path.parent.mkdir(parents=True, exist_ok=True)
with wave.open(str(out_path), 'wb') as wav_file:
wav_file.setnchannels(args.num_channels)
wav_file.setsampwidth(args.sample_width)
wav_file.setframerate(hps.data.sampling_rate)
wav_file.setnframes(len(audio_data))
wav_file.writeframes(audio_data.tobytes())
logging.info(f"Saved audio output to {out_path}")