-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
87 lines (69 loc) · 2.87 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os, time
import tensorflow as tf
import numpy as np
from skimage.io import imshow, imread
from skimage.color import hsv2rgb
import matplotlib.pyplot as plt
from models.VGG16FlowSearch import VGG16FlowSearch
root = os.path.dirname(os.path.realpath(__file__))
##########
# Config #
##########
tf.flags.DEFINE_boolean('debug', False, 'Debug mode')
# Images to process
tf.flags.DEFINE_string('image1', 'data/training/image_2/000055_10.png', 'Image 1')
tf.flags.DEFINE_string('image2', 'data/training/image_2/000055_11.png', 'Image 2')
# Ranges and step sizes
# (Defaults work for KITTI dataset)
tf.flags.DEFINE_integer('ymin', -88, 'Disparity range minimum in y-Direction')
tf.flags.DEFINE_integer('ymax', 52, 'Disparity range maximum in y-Direction')
tf.flags.DEFINE_integer('xmin', -244, 'Disparity range minimum in x-Direction')
tf.flags.DEFINE_integer('xmax', 192, 'Disparity range maximum in x-Direction')
tf.flags.DEFINE_integer('ystep', 4, 'Disparity block size in y-Direction')
tf.flags.DEFINE_integer('xstep', 4, 'Disparity block size in x-Direction')
tf.flags.DEFINE_string('experiment_name', str(int(time.time())), 'Name of the sub-directory to store results in')
tf.flags.DEFINE_boolean('plot', False, 'Plot the results on screen')
def cart2pol(x, y):
rho = np.sqrt(x ** 2 + y ** 2)
phi = np.arctan2(y, x)
rho = rho / np.max(rho)
return (rho, phi)
def vis_flow(image):
rho, phi = cart2pol(image[:, :, 0], image[:, :, 1])
return hsv2rgb(np.stack((phi, rho, np.ones_like(rho)), axis=-1))
def main(_):
FLAGS = tf.flags.FLAGS
if FLAGS.debug:
for k, v in FLAGS.__flags.items():
print("{}: {}".format(k.upper(), v.value))
print("")
result_dir = os.path.join(root, 'experiments', FLAGS.experiment_name)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
model = VGG16FlowSearch()
im1 = imread(os.path.join(root, FLAGS.image1))
im2 = imread(os.path.join(root, FLAGS.image2))
flow = -1 * model.infer(im1, im2, d_range=[[FLAGS.ymin,FLAGS.ymax],[FLAGS.xmin,FLAGS.xmax]],
step=[FLAGS.ystep,FLAGS.xstep])
if FLAGS.plot:
plt.figure(figsize=(26, 6))
plt.subplot(1, 2, 1)
plt.imshow(im1)
plt.subplot(1, 2, 2)
plt.imshow(im2)
plt.figure(figsize=(16, 6))
plt.imshow(vis_flow(flow))
plt.figure(figsize=(16, 6))
plt.imshow(flow[:, :, 0], cmap='plasma')
plt.colorbar()
plt.figure(figsize=(16, 6))
plt.imshow(flow[:, :, 1], cmap='plasma')
plt.colorbar()
with open(os.path.join(result_dir, 'flow.flo'), 'wb') as f:
f.write('PIEH'.encode('ascii'))
h,w,d = flow.shape
np.array([w, h]).astype(np.int32).tofile(f)
# Format flow for .flo file extension
np.reshape(flow[:,:,::-1], -1).astype(np.float32).tofile(f)
if __name__ == '__main__':
tf.app.run()