-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompression_detection_dcm_zurich.py
233 lines (187 loc) · 13.4 KB
/
compression_detection_dcm_zurich.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
''' activate venv:
source /Users/etiennedufayet/spinalcordtoolbox/python/etc/profile.d/conda.sh
conda activate venv_sct
'''
import os
import pprint
import pandas as pd
import csv
from spinalcordtoolbox.process_seg import compute_shape
from spinalcordtoolbox.utils.fs import get_absolute_path
from spinalcordtoolbox.centerline.core import ParamCenterline
from spinalcordtoolbox.aggregate_slicewise import aggregate_per_slice_or_level, merge_dict, func_wa, func_std
#récupère tous les subdirs d'un fichier = ici le fichier des patients
def get_subdirs(root_dir):
subdirs = []
for entry in os.scandir(root_dir):
if entry.is_dir() and entry.name.startswith("sub"): ##on ne garde que ceux commençant par "sub"
subdir_name = os.path.basename(entry.path)
subdirs.append(subdir_name)
subdirs.extend(get_subdirs(entry.path))
return subdirs
patients = get_subdirs("/Users/etiennedufayet/dcm-zurich")
patient_seg_dict = {}
group_funcs = (('MEAN', func_wa), ('STD', func_std))
for patient in patients:
input_seg = "/Users/etiennedufayet/dcm-zurich/derivatives/labels/"+patient+"/anat/"+patient+"_acq-axial_T2w_label-SC_mask-manual.nii.gz"
input_discfile = "/Users/etiennedufayet/dcm-zurich/derivatives/labels/"+patient+"/anat/"+patient+"_acq-axial_T2w_labels-manual.nii.gz"
if os.path.exists(input_seg) and os.path.exists(input_discfile):
## args for metrics computation
fname_seg = input_seg
fname_disc = input_discfile
angle_correction = 1
param_centerline = ParamCenterline(
algo_fitting='bspline',
smooth=30,
minmax=True)
verbose = 1
torsion_slices = 3
# Compute morphometric metrics
metrics, fit_results = compute_shape(fname_seg,
angle_correction=angle_correction,
param_centerline=param_centerline,
verbose=verbose)
print(metrics)
# Compute the average and standard deviation across slices
metrics_agg = {}
for key in ['area', 'diameter_AP', 'diameter_RL', 'solidity', 'orientation']:
# Note: we do not need to calculate all the metrics, we need just:
# - area (will be CSA)
# - diameter_AP and diameter_RL (used to calculate compression ratio)
# - solidity
# - orientation (used to calculate torsion)
# Note: we have to calculate metrics across all slices (perslice) to be able to compute orientation
metrics_agg[key] = aggregate_per_slice_or_level(metrics[key],
perslice=True,
perlevel=False, fname_vert_level=fname_disc,
group_funcs=group_funcs
)
metrics_agg_merged = merge_dict(metrics_agg)
# Compute compression ratio (CR) as 'diameter_AP' / 'diameter_RL'
# TODO - compression ratio (CR) could be computed directly within the compute_shape function -> consider that
for key in metrics_agg_merged.keys(): # Loop across slices
# Ignore slices which have diameter_AP or diameter_RL equal to None (e.g., due to bad SC segmentation)
if metrics_agg_merged[key]['MEAN(diameter_AP)'] is None or metrics_agg_merged[key]['MEAN(diameter_RL)'] is None:
metrics_agg_merged[key]['CompressionRatio'] = None
else:
metrics_agg_merged[key]['CompressionRatio'] = metrics_agg_merged[key]['MEAN(diameter_AP)'] / \
metrics_agg_merged[key]['MEAN(diameter_RL)']
# Compute torsion as the average of absolute differences in orientation between the given slice and x slice(s)
# above and below. For details see eq 1-3 in https://pubmed.ncbi.nlm.nih.gov/35371944/
# TODO - torsion could be computed directly within the compute_shape function -> consider that
# Since the torsion is computed from slices above and below, it cannot be computed for the x first and last x slices
# --> x first and x last slices will be excluded f
# From the torsion computation
# For example, if torsion_slices == 3, the first three and last three slices will have torsion = None
slices = list(metrics_agg_merged.keys())[torsion_slices:-torsion_slices]
for key in metrics_agg_merged.keys(): # Loop across slices
if key in slices:
# Note: the key is a tuple (e.g. `1,`), not an int (e.g., 1), thus key[0] is used to convert tuple to int
# and `,` is used to convert int back to tuple
# TODO - the keys could be changed from tuple to int inside the compute_shape function -> consider that
if metrics_agg_merged[key]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] - 1,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] + 1,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] - 2,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] + 2,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] - 3,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] + 3,]['MEAN(orientation)'] is not None:
if torsion_slices == 3:
metrics_agg_merged[key]['Torsion'] = 1/6 * (abs(metrics_agg_merged[key]['MEAN(orientation)'] -
metrics_agg_merged[key[0] - 1,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key]['MEAN(orientation)'] -
metrics_agg_merged[key[0] + 1,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key[0] - 1,]['MEAN(orientation)'] -
metrics_agg_merged[key[0] - 2,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key[0] + 1,]['MEAN(orientation)'] -
metrics_agg_merged[key[0] + 2,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key[0] - 2,]['MEAN(orientation)'] -
metrics_agg_merged[key[0] - 3,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key[0] + 2,]['MEAN(orientation)'] -
metrics_agg_merged[key[0] + 3,]['MEAN(orientation)']))
# TODO - implement also equations for torsion_slices == 1 and torsion_slices == 2
else:
metrics_agg_merged[key]['Torsion'] = None
patient_seg_dict[patient] = metrics_agg_merged
## Test for only one patient
'''patient = patients[0]
input_seg = "/Users/etiennedufayet/dcm-zurich/derivatives/labels/"+patient+"/anat/"+patient+"_acq-axial_T2w_label-SC_mask-manual.nii.gz"
input_discfile = "/Users/etiennedufayet/dcm-zurich/derivatives/labels/"+patient+"/anat/"+patient+"_acq-axial_T2w_labels-manual.nii.gz"
if os.path.exists(input_seg) and os.path.exists(input_discfile):
## args for metrics computation
fname_seg = input_seg
fname_disc = input_discfile
angle_correction = 1
param_centerline = ParamCenterline(
algo_fitting='bspline',
smooth=30,
minmax=True)
verbose = 1
torsion_slices = 3
# Compute morphometric metrics
metrics, fit_results = compute_shape(fname_seg,
angle_correction=angle_correction,
param_centerline=param_centerline,
verbose=verbose)
# Compute the average and standard deviation across slices
metrics_agg = {}
for key in ['area', 'diameter_AP', 'diameter_RL', 'solidity', 'orientation']:
# Note: we do not need to calculate all the metrics, we need just:
# - area (will be CSA)
# - diameter_AP and diameter_RL (used to calculate compression ratio)
# - solidity
# - orientation (used to calculate torsion)
# Note: we have to calculate metrics across all slices (perslice) to be able to compute orientation
metrics_agg[key] = aggregate_per_slice_or_level(metrics[key],
perslice=True,
perlevel=False, fname_vert_level=fname_disc,
group_funcs=group_funcs
)
metrics_agg_merged = merge_dict(metrics_agg)
# Compute compression ratio (CR) as 'diameter_AP' / 'diameter_RL'
# TODO - compression ratio (CR) could be computed directly within the compute_shape function -> consider that
for key in metrics_agg_merged.keys(): # Loop across slices
# Ignore slices which have diameter_AP or diameter_RL equal to None (e.g., due to bad SC segmentation)
if metrics_agg_merged[key]['MEAN(diameter_AP)'] is None or metrics_agg_merged[key]['MEAN(diameter_RL)'] is None:
metrics_agg_merged[key]['CompressionRatio'] = None
else:
metrics_agg_merged[key]['CompressionRatio'] = metrics_agg_merged[key]['MEAN(diameter_AP)'] / \
metrics_agg_merged[key]['MEAN(diameter_RL)']
# Compute torsion as the average of absolute differences in orientation between the given slice and x slice(s)
# above and below. For details see eq 1-3 in https://pubmed.ncbi.nlm.nih.gov/35371944/
# TODO - torsion could be computed directly within the compute_shape function -> consider that
# Since the torsion is computed from slices above and below, it cannot be computed for the x first and last x slices
# --> x first and x last slices will be excluded f
# From the torsion computation
# For example, if torsion_slices == 3, the first three and last three slices will have torsion = None
slices = list(metrics_agg_merged.keys())[torsion_slices:-torsion_slices]
for key in metrics_agg_merged.keys(): # Loop across slices
if key in slices:
# Note: the key is a tuple (e.g. `1,`), not an int (e.g., 1), thus key[0] is used to convert tuple to int
# and `,` is used to convert int back to tuple
# TODO - the keys could be changed from tuple to int inside the compute_shape function -> consider that
if metrics_agg_merged[key]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] - 1,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] + 1,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] - 2,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] + 2,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] - 3,]['MEAN(orientation)'] is not None and \
metrics_agg_merged[key[0] + 3,]['MEAN(orientation)'] is not None:
if torsion_slices == 3:
metrics_agg_merged[key]['Torsion'] = 1/6 * (abs(metrics_agg_merged[key]['MEAN(orientation)'] -
metrics_agg_merged[key[0] - 1,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key]['MEAN(orientation)'] -
metrics_agg_merged[key[0] + 1,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key[0] - 1,]['MEAN(orientation)'] -
metrics_agg_merged[key[0] - 2,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key[0] + 1,]['MEAN(orientation)'] -
metrics_agg_merged[key[0] + 2,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key[0] - 2,]['MEAN(orientation)'] -
metrics_agg_merged[key[0] - 3,]['MEAN(orientation)']) +
abs(metrics_agg_merged[key[0] + 2,]['MEAN(orientation)'] -
metrics_agg_merged[key[0] + 3,]['MEAN(orientation)']))
# TODO - implement also equations for torsion_slices == 1 and torsion_slices == 2
else:
metrics_agg_merged[key]['Torsion'] = None
patient_seg_dict[patient] = metrics_agg_merged
pprint.pprint(patient_seg_dict, indent=4)'''