forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumber-of-possible-sets-of-closing-branches.py
72 lines (63 loc) · 2.61 KB
/
number-of-possible-sets-of-closing-branches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Time: O(r + 2^n * n^2)
# Space: O(n^3)
# graph, bitmasks, Floyd-Warshall algorithm, backtracking
class Solution(object):
def numberOfSets(self, n, maxDistance, roads):
"""
:type n: int
:type maxDistance: int
:type roads: List[List[int]]
:rtype: int
"""
def check(mask, dist):
return all(dist[i][j] <= maxDistance for i in xrange(n) if mask&(1<<i) for j in xrange(i+1, n) if mask&(1<<j))
def floydWarshall(dist, k):
for i in xrange(len(dist)):
for j in xrange(i+1, len(dist[i])):
dist[j][i] = dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])
def backtracking(i, mask, dist):
if i == n:
result[0] += check(mask, dist)
return
for j in xrange(2):
new_dist = [d[:] for d in dist]
if j:
floydWarshall(new_dist, i)
backtracking(i+1, mask|(j<<i), new_dist)
dist = [[0 if u == v else float("inf") for v in xrange(n)] for u in xrange(n)]
for u, v, w in roads:
dist[u][v] = min(dist[u][v], w)
dist[v][u] = min(dist[v][u], w)
result = [0]
backtracking(0, 0, [d[:] for d in dist])
return result[0]
# Time: O(r + 2^n * n^3)
# Space: O(n^2)
# bitmasks, Floyd-Warshall algorithm
class Solution2(object):
def numberOfSets(self, n, maxDistance, roads):
"""
:type n: int
:type maxDistance: int
:type roads: List[List[int]]
:rtype: int
"""
def check(mask, dist):
return all(dist[i][j] <= maxDistance for i in xrange(n) if mask&(1<<i) for j in xrange(i+1, n) if mask&(1<<j))
def floydWarshall(mask, dist):
for k in xrange(len(dist[0])):
if mask&(1<<k) == 0:
continue
for i in xrange(len(dist)):
if mask&(1<<i) == 0: # optional, to speed up performance
continue
for j in xrange(i+1, len(dist[i])):
if mask&(1<<j) == 0: # optional, to speed up performance
continue
dist[j][i] = dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])
return check(mask, dist)
dist = [[0 if u == v else float("inf") for v in xrange(n)] for u in xrange(n)]
for u, v, w in roads:
dist[u][v] = min(dist[u][v], w)
dist[v][u] = min(dist[v][u], w)
return sum(floydWarshall(mask, [d[:] for d in dist]) for mask in xrange(1<<n))