forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind-array-given-subset-sums.py
211 lines (193 loc) · 7.93 KB
/
find-array-given-subset-sums.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Time: O(n * 2^n), len(sums) = 2^n
# Space: O(1)
# [proof]
# - let d = sorted_sums[0]-sorted_sums[1] and d != -d (d = 0 is trival), where one of +d/-d is the smallest positive or largest negative number of the original solution of [S1, ..., S(2^n)]
# - given Sp-d = 0 for some p in [1, 2^n] and Sq-(-d) = 0 for some q in [1, 2^n]
# assume d is a number of the original solution of [S1, ..., S(2^n)] (the proof where -d is a number of the original solution is vice versa)
# let Sq = x1+...+xi where 1 <= i <= n-1
# let [d]+[x1, ..., xi]+[x(i+1), ..., x(n-1)] be the original solution
# => new_sums([S1, ..., S(2^n)], d)
# = subset_sums([x1, ..., xi]+[x(i+1), ..., x(n-1)])
# if we choose -d as a number of a solution of [S1, ..., S(2^n)]
# => new_sums([S1, ..., S(2^n)], -d)
# = new_sums([S1, ..., S(2^n)], -(x1+...+xi))
# = subset_sums([(-x1), ..., (-xi)]+[x(i+1), ..., x(n-1)])
# => [-d]+[(-x1), ..., (-xi)]+[x(i+1), ..., x(n-1)] is also a solution
#
# [conclusion]
# - if new_sums with +d/-d (including d = 0) both contain zero, we can choose either one
# - if only one of new_sums with +d/-d contains zero, we can only choose the one with zero since subset_sums must contain zero
# optimized from solution4 (not using dict), runtime: 1040 ms
class Solution(object):
def recoverArray(self, n, sums):
"""
:type n: int
:type sums: List[int]
:rtype: List[int]
"""
sums.sort() # Time: O(2^n * log(2^n)) = O(n * 2^n)
shift, l = 0, len(sums)
result = []
for _ in xrange(n): # log(2^n) times, each time costs O(2^(n-len(result))), Total Time: O(2^n)
new_shift = sums[0]-sums[1]
assert(new_shift <= 0)
has_zero, j, k = False, 0, 0
for i in xrange(l):
if k < j and sums[k] == sums[i]: # skip shifted one
k += 1
else:
if shift == sums[i]-new_shift:
has_zero = True
sums[j] = sums[i]-new_shift
j += 1
if has_zero: # contain 0, choose this side
result.append(new_shift)
else: # contain no 0, choose another side and shift 0 offset
result.append(-new_shift)
shift -= new_shift
l //= 2
return result
# Time: O(2^n + n * r), len(sums) = 2^n
# , r = max(sums)-min(sums)
# Space: O(2^n + r)
import collections
# optimized from solution4 (not using dict), runtime: 968 ms
class Solution2(object):
def recoverArray(self, n, sums):
"""
:type n: int
:type sums: List[int]
:rtype: List[int]
"""
min_sum, max_sum = min(sums), max(sums)
dp = [0]*(max_sum-min_sum+1)
for x in sums:
dp[x-min_sum] += 1
sorted_sums = [x for x in xrange(min_sum, max_sum+1) if dp[x-min_sum]] # Time: O(r)
shift = 0
result = []
for _ in xrange(n): # log(2^n) times, each time costs O(2^(n-len(result)))+O(r), Total Time: O(2^n + n * r)
new_dp = [0]*(max_sum-min_sum+1)
new_sorted_sums = []
new_shift = sorted_sums[0]-sorted_sums[1] if dp[sorted_sums[0]-min_sum] == 1 else 0
assert(new_shift <= 0)
for x in sorted_sums:
if not dp[x-min_sum]:
continue
dp[(x-new_shift)-min_sum] -= dp[x-min_sum] if new_shift else dp[x-min_sum]//2
new_dp[(x-new_shift)-min_sum] = dp[x-min_sum]
new_sorted_sums.append(x-new_shift)
dp = new_dp
sorted_sums = new_sorted_sums
if dp[shift-min_sum]: # contain 0, choose this side
result.append(new_shift)
else: # contain no 0, choose another side and shift 0 offset
result.append(-new_shift)
shift -= new_shift
return result
# Time: O(n * 2^n), len(sums) = 2^n
# Space: O(2^n)
import collections
import operator
# optimized from solution4, runtime: 1044 ms
class Solution3(object):
def recoverArray(self, n, sums):
"""
:type n: int
:type sums: List[int]
:rtype: List[int]
"""
dp = {k: v for k, v in collections.Counter(sums).iteritems()}
total = reduce(operator.ior, dp.itervalues(), 0)
basis = total&-total # find rightmost bit 1
if basis > 1:
for k in dp.iterkeys():
dp[k] //= basis
sorted_sums = sorted(dp.iterkeys()) # Time: O(2^n * log(2^n)) = O(n * 2^n)
shift = 0
result = [0]*(basis.bit_length()-1)
for _ in xrange(n-len(result)): # log(2^n) times, each time costs O(2^(n-len(result))), Total Time: O(2^n)
new_dp = {}
new_sorted_sums = []
new_shift = sorted_sums[0]-sorted_sums[1]
assert(new_shift < 0)
for x in sorted_sums:
if not dp[x]:
continue
dp[x-new_shift] -= dp[x]
new_dp[x-new_shift] = dp[x]
new_sorted_sums.append(x-new_shift)
dp = new_dp
sorted_sums = new_sorted_sums
if shift in dp: # contain 0, choose this side
result.append(new_shift)
else: # contain no 0, choose another side and shift 0 offset
result.append(-new_shift)
shift -= new_shift
return result
# Time: O(n * 2^n), len(sums) = 2^n
# Space: O(2^n)
import collections
# optimized from solution4 (not using OrderedDict), runtime: 1024 ms
class Solution4(object):
def recoverArray(self, n, sums):
"""
:type n: int
:type sums: List[int]
:rtype: List[int]
"""
dp = {k: v for k, v in collections.Counter(sums).iteritems()}
sorted_sums = sorted(dp.iterkeys()) # Time: O(2^n * log(2^n)) = O(n * 2^n)
shift = 0
result = []
for _ in xrange(n): # log(2^n) times, each time costs O(2^(n-len(result))), Total Time: O(2^n)
new_dp = {}
new_sorted_sums = []
new_shift = sorted_sums[0]-sorted_sums[1] if dp[sorted_sums[0]] == 1 else 0
assert(new_shift <= 0)
for x in sorted_sums:
if not dp[x]:
continue
dp[x-new_shift] -= dp[x] if new_shift else dp[x]//2
new_dp[x-new_shift] = dp[x]
new_sorted_sums.append(x-new_shift)
dp = new_dp
sorted_sums = new_sorted_sums
if shift in dp: # contain 0, choose this side
result.append(new_shift)
else: # contain no 0, choose another side and shift 0 offset
result.append(-new_shift)
shift -= new_shift
return result
# Time: O(n * 2^n), len(sums) = 2^n
# Space: O(2^n)
import collections
# runtime: 1720 ms
class Solution5(object):
def recoverArray(self, n, sums):
"""
:type n: int
:type sums: List[int]
:rtype: List[int]
"""
dp = OrderedDict(sorted(collections.Counter(sums).iteritems())) # Time: O(2^n * log(2^n)) = O(n * 2^n)
shift = 0
result = []
for _ in xrange(n): # log(2^n) times, each time costs O(2^(n-len(result))), Total Time: O(2^n)
new_dp = OrderedDict()
it = iter(dp)
min_sum = next(it)
new_shift = min_sum-next(it) if dp[min_sum] == 1 else 0
assert(new_shift <= 0)
for x in dp.iterkeys():
if not dp[x]:
continue
dp[x-new_shift] -= dp[x] if new_shift else dp[x]//2
new_dp[x-new_shift] = dp[x]
dp = new_dp
if shift in dp: # contain 0, choose this side
result.append(new_shift)
else: # contain no 0, choose another side and shift 0 offset
result.append(-new_shift)
shift -= new_shift
return result