forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistinct-prime-factors-of-product-of-array.py
40 lines (37 loc) · 1.26 KB
/
distinct-prime-factors-of-product-of-array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Time: precompute: O(sqrt(MAX_N))
# runtime: O(m + nlog(logn)), m = len(nums), n = max(nums)
# Space: O(sqrt(MAX_N))
# number theory
def linear_sieve_of_eratosthenes(n):
primes = []
spf = [-1]*(n+1) # the smallest prime factor
for i in xrange(2, n+1):
if spf[i] == -1:
spf[i] = i
primes.append(i)
for p in primes:
if i*p > n or p > spf[i]:
break
spf[i*p] = p
return primes # len(primes) = O(n/(logn-1)), reference: https://math.stackexchange.com/questions/264544/how-to-find-number-of-prime-numbers-up-to-to-n
MAX_N = 10**3
PRIMES = linear_sieve_of_eratosthenes(int(MAX_N**0.5))
class Solution(object):
def distinctPrimeFactors(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
result = set()
for x in set(nums): # Time: O(n/p1 + n/p2 + ... + n/pk) = O(n * (1/p1 + 1/p2 + ... + 1/pk)) = O(nlog(logn))
for p in PRIMES:
if p > x:
break
if x%p:
continue
result.add(p)
while x%p == 0:
x //= p
if x != 1: # x is a prime
result.add(x)
return len(result)