forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaximum-gcd-sum-of-a-subarray.cpp
131 lines (124 loc) · 4.59 KB
/
maximum-gcd-sum-of-a-subarray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Time: O(nlogr), r = max(nums)
// Space: O(logr)
// number theory, dp, prefix sum
class Solution {
public:
long long maxGcdSum(vector<int>& nums, int k) {
int64_t result = 0;
vector<tuple<int, int, int64_t>> dp;
for (int64_t right = 0, prefix = 0; right < size(nums); ++right) {
dp.emplace_back(right, nums[right], prefix);
prefix += nums[right];
vector<tuple<int, int, int64_t>> new_dp;
new_dp.reserve(size(dp));
for (const auto& [left, g, p] : dp) { // Time: O(logr)
const int ng = gcd(g, nums[right]); // Total Time: O(nlogr)
if (empty(new_dp) || get<1>(new_dp.back()) != ng) {
new_dp.emplace_back(left, ng, p); // left and ng are both strictly increasing
}
}
dp = move(new_dp);
for (const auto& [left, g, p] : dp) {
if (right - left + 1 < k) {
break;
}
result = max(result, (prefix - p) * g);
}
}
return result;
}
};
// Time: O(nlogr), r = max(nums)
// Space: O(n)
// number theory, dp, prefix sum
class Solution2 {
public:
long long maxGcdSum(vector<int>& nums, int k) {
vector<int64_t> prefix(size(nums) + 1);
for (int i = 0; i < size(nums); ++i) {
prefix[i + 1] = prefix[i] + nums[i];
}
int64_t result = 0;
vector<pair<int, int>> dp;
for (int right = 0; right < size(nums); ++right) {
dp.emplace_back(right, nums[right]);
vector<pair<int, int>> new_dp;
new_dp.reserve(size(dp));
for (const auto& [left, g] : dp) { // Time: O(logr)
const int ng = gcd(g, nums[right]); // Total Time: O(nlogr)
if (empty(new_dp) || new_dp.back().second != ng) {
new_dp.emplace_back(left, ng); // left and ng are both strictly increasing
}
}
dp = move(new_dp);
for (const auto& [left, g] : dp) {
if (right - left + 1 < k) {
break;
}
result = max(result, (prefix[right + 1] - prefix[left]) * g);
}
}
return result;
}
};
// Time: O(n * logr * (logn * logr)) = O(n * (logr)^2 * logn), r = max(nums)
// Space: O(nlogn)
// number theory, binary search, rmq, sparse table, prefix sum
class Solution3 {
public:
long long maxGcdSum(vector<int>& nums, int k) {
const auto& binary_search_right = [&](int left, int right, const auto& check) {
while (left <= right) {
const int mid = left + (right - left) / 2;
if (!check(mid)) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return right;
};
vector<int64_t> prefix(size(nums) + 1);
for (int i = 0; i < size(nums); ++i) {
prefix[i + 1] = prefix[i] + nums[i];
}
int64_t result = 0;
SparseTable rmq(nums, gcd<int, int>);
for (int left = 0; left < size(nums); ++left) {
for (int right = left; right < size(nums); ++right) { // O(logr) times
const int g = rmq.query(left, right);
right = binary_search_right(right, size(nums) - 1, [&](const auto& x) {
return rmq.query(left, x) >= g;
}); // Time: O(logn) * O(logr)
if (right - left + 1 >= k) {
result = max(result, (prefix[right + 1] - prefix[left]) * g);
}
}
}
return result;
}
private:
// Reference: https://cp-algorithms.com/data_structures/sparse-table.html
class SparseTable {
public:
SparseTable(const vector<int>& arr, function<int (int, int)> fn)
: fn(fn) { // Time: O(n * logn * logr), Space: O(nlogn)
const int n = size(arr);
const int k = __lg(n);
st.assign(k + 1, vector<int64_t>(n));
st[0].assign(cbegin(arr), cend(arr));
for (int i = 1; i <= k; ++i) {
for (int j = 0; j + (1 << i) <= n; ++j) {
st[i][j] = fn(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);
}
}
}
int64_t query(int L, int R) const {
const int i = __lg(R - L + 1);
return fn(st[i][L], st[i][R - (1 << i) + 1]); // Time: O(logr)
}
private:
vector<vector<int64_t>> st;
const function<int (int, int)>& fn;
};
};