forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind-triangular-sum-of-an-array.cpp
73 lines (70 loc) · 2.51 KB
/
find-triangular-sum-of-an-array.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// Time: O(n)
// Space: O(1)
// combinatorics, number theory
class Solution {
public:
int triangularSum(vector<int>& nums) {
const auto& exp_mod = [](const auto& p, const auto& mod) {
vector<int> result = {p};
while (result.back() * p % 10 != result[0]) {
result.emplace_back(result.back() * p %10);
}
rotate(rbegin(result), rbegin(result) + 1, rend(result));
return result;
};
const auto& inv_mod = [](const auto& x, const auto& mod) {
int y = x;
while (y * x % 10 != 1) {
y = y * x % 10;
}
return y;
};
const auto& factor_p = [](auto x, const auto& p, auto cnt, auto diff) {
if (x == 0) {
return make_pair(x, cnt);
}
while (x % p == 0) {
x /= p;
cnt += diff;
}
return make_pair(x, cnt);
};
const unordered_map<int, vector<int>> EXP = {{2, exp_mod(2, 10)}, {5, exp_mod(5, 10)}}; // {2:[6, 2, 4, 8], 5:[5]}
const unordered_map<int, int> INV = {{1, inv_mod(1, 10)}, {3, inv_mod(3, 10)}, {7, inv_mod(7, 10)}, {9, inv_mod(9, 10)}}; // {1:1, 3:7, 7:3, 9:9}
int result = 0;
int nCr = 1;
unordered_map<int, int> cnt = {{2, 0}, {5, 0}};
for (int i = 0; i < size(nums); ++i) {
if (!cnt[2] && !cnt[5]) {
result = (result + nCr * nums[i]) % 10;
} else if (cnt[2] && !cnt[5]) {
result = (result + nCr * EXP.at(2)[cnt[2] % size(EXP.at(2))] * nums[i]) % 10;
} else if (!cnt[2] && cnt[5]) {
result = (result + nCr*EXP.at(5)[cnt[5] % size(EXP.at(5))] * nums[i]) % 10;
}
int mul = (size(nums) - 1) - i;
tie(mul, cnt[2]) = factor_p(mul, 2, cnt[2], 1);
tie(mul, cnt[5]) = factor_p(mul, 5, cnt[5], 1);
int div = i + 1;
tie(div, cnt[2]) = factor_p(div, 2, cnt[2], -1);
tie(div, cnt[5]) = factor_p(div, 5, cnt[5], -1);
nCr = nCr * mul % 10;
nCr = nCr * INV.at(div % 10) % 10;
}
return result;
}
};
// Time: O(n^2)
// Space: O(1)
// simulation
class Solution2 {
public:
int triangularSum(vector<int>& nums) {
for (int i = size(nums) - 1; i >= 0; --i) {
for (int j = 0; j < i; ++j) {
nums[j] = (nums[j] + nums[j + 1]) % 10;
}
}
return nums[0];
}
};