forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathequal-rational-numbers.cpp
110 lines (97 loc) · 2.97 KB
/
equal-rational-numbers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
// Time: O(1)
// Space: O(1)
class Fraction {
public:
Fraction() = default;
Fraction(int64_t n)
: Fraction(n, 1)
{
}
Fraction(int64_t n, int64_t d)
: numerator_(n)
, denominator_(d)
, integer_(0)
{
reduce();
}
~Fraction() = default;
void set_num(int64_t value) { numerator_ = value; }
void set_den(int64_t value) { denominator_ = value; }
void set_int(int64_t value) { integer_ = value; }
int64_t get_num() const { return numerator_; }
int64_t get_den() const { return denominator_; }
int64_t get_int() const { return integer_; }
void reduce();
int64_t calculate_gcd(int64_t, int64_t) const;
Fraction& operator+=(const Fraction& rhs);
private:
int64_t numerator_, denominator_, integer_;
};
void Fraction::reduce()
{
const auto gcd = calculate_gcd(numerator_, denominator_);
numerator_ = numerator_ / gcd;
denominator_ = denominator_ / gcd;
integer_ += numerator_ / denominator_;
numerator_ %= denominator_;
}
int64_t Fraction::calculate_gcd(int64_t a, int64_t b) const
{
a = std::abs(a);
b = std::abs(b);
while (b != 0) {
int64_t tmp = b;
b = a % b;
a = tmp;
}
return a;
}
Fraction& Fraction::operator+=(const Fraction& rhs)
{
set_num((get_num() * rhs.get_den()) + (get_den() * rhs.get_num()));
set_den(get_den() * rhs.get_den());
set_int(get_int() + rhs.get_int());
reduce();
return *this;
}
bool operator==(const Fraction &lhs, const Fraction &rhs) {
return lhs.get_num() == rhs.get_num() &&
lhs.get_den() == rhs.get_den() &&
lhs.get_int() == rhs.get_int();
}
std::ostream &operator<<(std::ostream &os, const Fraction &value) {
os << value.get_int() << ".(" << value.get_num() << "/" << value.get_den() << ")";
return os;
}
class Solution {
public:
bool isRationalEqual(string S, string T) {
return frac(S) == frac(T);
}
private:
Fraction frac(const string& S) {
auto i = S.find('.');
if (i == string::npos) {
return Fraction(stol(S));
}
Fraction result(stol(S.substr(0, i)), 1);
const auto& non_int_part = S.substr(i + 1);
i = non_int_part.find('(');
if (i == string::npos) {
if (!non_int_part.empty()) {
result += Fraction(stol(non_int_part),
static_cast<int64_t>(pow(10, non_int_part.length())));
}
return result;
}
if (i > 0) {
result += Fraction(stol(non_int_part.substr(0, i)),
static_cast<int64_t>(pow(10, i)));
}
const auto& repeat_part = non_int_part.substr(i + 1, non_int_part.length() - i - 2);
result += Fraction(stol(repeat_part),
static_cast<int64_t>(pow(10, i)) *
(static_cast<int64_t>(pow(10, repeat_part.length())) - 1));
return result;
}
};