forked from g0orx/wdsp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
amsq.c
272 lines (243 loc) · 6.77 KB
/
amsq.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/* amsq.c
This file is part of a program that implements a Software-Defined Radio.
Copyright (C) 2013 Warren Pratt, NR0V
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
The author can be reached by email at
*/
#include "comm.h"
void compute_slews(AMSQ a)
{
int i;
double delta, theta;
delta = PI / (double)a->ntup;
theta = 0.0;
for (i = 0; i <= a->ntup; i++)
{
a->cup[i] = a->muted_gain + (1.0 - a->muted_gain) * 0.5 * (1.0 - cos (theta));
theta += delta;
}
delta = PI / (double)a->ntdown;
theta = 0.0;
for (i = 0; i <= a->ntdown; i++)
{
a->cdown[i] = a->muted_gain + (1.0 - a->muted_gain) * 0.5 * (1.0 + cos (theta));
theta += delta;
}
}
void calc_amsq(AMSQ a)
{
// signal averaging
a->trigsig = (double *)malloc0(a->size * sizeof(complex));
a->avm = exp(-1.0 / (a->rate * a->avtau));
a->onem_avm = 1.0 - a->avm;
a->avsig = 0.0;
// level change
a->ntup = (int)(a->tup * a->rate);
a->ntdown = (int)(a->tdown * a->rate);
a->cup = (double *)malloc0((a->ntup + 1) * sizeof(double));
a->cdown = (double *)malloc0((a->ntdown + 1) * sizeof(double));
compute_slews(a);
// control
a->state = 0;
}
void decalc_amsq (AMSQ a)
{
_aligned_free (a->cdown);
_aligned_free (a->cup);
_aligned_free (a->trigsig);
}
AMSQ create_amsq (int run, int size, double* in, double* out, double* trigger, int rate, double avtau,
double tup, double tdown, double tail_thresh, double unmute_thresh, double min_tail, double max_tail, double muted_gain)
{
AMSQ a = (AMSQ) malloc0 (sizeof (amsq));
a->run = run;
a->size = size;
a->in = in;
a->out = out;
a->rate = (double)rate;
a->muted_gain = muted_gain;
a->trigger = trigger;
a->avtau = avtau;
a->tup = tup;
a->tdown = tdown;
a->tail_thresh = tail_thresh;
a->unmute_thresh = unmute_thresh;
a->min_tail = min_tail;
a->max_tail = max_tail;
calc_amsq (a);
return a;
}
void destroy_amsq (AMSQ a)
{
decalc_amsq (a);
_aligned_free (a);
}
void flush_amsq (AMSQ a)
{
memset (a->trigsig, 0, a->size * sizeof (complex));
a->avsig = 0.0;
a->state = 0;
}
enum _amsqstate
{
MUTED,
INCREASE,
UNMUTED,
TAIL,
DECREASE
};
void xamsq (AMSQ a)
{
if (a->run)
{
int i;
double sig, siglimit;
for (i = 0; i < a->size; i++)
{
sig = sqrt (a->trigsig[2 * i + 0] * a->trigsig[2 * i + 0] + a->trigsig[2 * i + 1] * a->trigsig[2 * i + 1]);
a->avsig = a->avm * a->avsig + a->onem_avm * sig;
switch (a->state)
{
case MUTED:
if (a->avsig > a->unmute_thresh)
{
a->state = INCREASE;
a->count = a->ntup;
}
a->out[2 * i + 0] = a->muted_gain * a->in[2 * i + 0];
a->out[2 * i + 1] = a->muted_gain * a->in[2 * i + 1];
break;
case INCREASE:
a->out[2 * i + 0] = a->in[2 * i + 0] * a->cup[a->ntup - a->count];
a->out[2 * i + 1] = a->in[2 * i + 1] * a->cup[a->ntup - a->count];
if (a->count-- == 0)
a->state = UNMUTED;
break;
case UNMUTED:
if (a->avsig < a->tail_thresh)
{
a->state = TAIL;
if ((siglimit = a->avsig) > 1.0) siglimit = 1.0;
a->count = (int)((a->min_tail + (a->max_tail - a->min_tail) * (1.0 - siglimit)) * a->rate);
}
a->out[2 * i + 0] = a->in[2 * i + 0];
a->out[2 * i + 1] = a->in[2 * i + 1];
break;
case TAIL:
a->out[2 * i + 0] = a->in[2 * i + 0];
a->out[2 * i + 1] = a->in[2 * i + 1];
if (a->avsig > a->unmute_thresh)
a->state = UNMUTED;
else if (a->count-- == 0)
{
a->state = DECREASE;
a->count = a->ntdown;
}
break;
case DECREASE:
a->out[2 * i + 0] = a->in[2 * i + 0] * a->cdown[a->ntdown - a->count];
a->out[2 * i + 1] = a->in[2 * i + 1] * a->cdown[a->ntdown - a->count];
if (a->count-- == 0)
a->state = MUTED;
break;
}
}
}
else if (a->in != a->out)
memcpy (a->out, a->in, a->size * sizeof (complex));
}
void xamsqcap (AMSQ a)
{
memcpy (a->trigsig, a->trigger, a->size * sizeof (complex));
}
void setBuffers_amsq (AMSQ a, double* in, double* out, double* trigger)
{
a->in = in;
a->out = out;
a->trigger = trigger;
}
void setSamplerate_amsq (AMSQ a, int rate)
{
decalc_amsq (a);
a->rate = rate;
calc_amsq (a);
}
void setSize_amsq (AMSQ a, int size)
{
decalc_amsq (a);
a->size = size;
calc_amsq (a);
}
/********************************************************************************************************
* *
* RXA Properties *
* *
********************************************************************************************************/
PORT
void SetRXAAMSQRun (int channel, int run)
{
EnterCriticalSection (&ch[channel].csDSP);
rxa[channel].amsq.p->run = run;
LeaveCriticalSection (&ch[channel].csDSP);
}
PORT
void SetRXAAMSQThreshold (int channel, double threshold)
{
double thresh = pow (10.0, threshold / 20.0);
EnterCriticalSection (&ch[channel].csDSP);
rxa[channel].amsq.p->tail_thresh = 0.9 * thresh;
rxa[channel].amsq.p->unmute_thresh = thresh;
LeaveCriticalSection (&ch[channel].csDSP);
}
PORT
void SetRXAAMSQMaxTail (int channel, double tail)
{
AMSQ a;
EnterCriticalSection (&ch[channel].csDSP);
a = rxa[channel].amsq.p;
if (tail < a->min_tail) tail = a->min_tail;
a->max_tail = tail;
LeaveCriticalSection (&ch[channel].csDSP);
}
/********************************************************************************************************
* *
* TXA Properties *
* *
********************************************************************************************************/
PORT
void SetTXAAMSQRun (int channel, int run)
{
EnterCriticalSection (&ch[channel].csDSP);
txa[channel].amsq.p->run = run;
LeaveCriticalSection (&ch[channel].csDSP);
}
PORT
void SetTXAAMSQMutedGain (int channel, double dBlevel)
{ // dBlevel is negative
AMSQ a;
EnterCriticalSection (&ch[channel].csDSP);
a = txa[channel].amsq.p;
a->muted_gain = pow (10.0, dBlevel / 20.0);
compute_slews(a);
LeaveCriticalSection (&ch[channel].csDSP);
}
PORT
void SetTXAAMSQThreshold (int channel, double threshold)
{
double thresh = pow (10.0, threshold / 20.0);
EnterCriticalSection (&ch[channel].csDSP);
txa[channel].amsq.p->tail_thresh = 0.9 * thresh;
txa[channel].amsq.p->unmute_thresh = thresh;
LeaveCriticalSection (&ch[channel].csDSP);
}