forked from cmelab/QD-Paper-RDF
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqd_rdf.py
58 lines (56 loc) · 1.89 KB
/
qd_rdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import matplotlib.pyplot as plt
from skimage.exposure import rescale_intensity
from skimage import io, filters, color, measure
from skimage.feature import peak_local_max
from scipy import ndimage
import numpy as np
import xlrd
import freud.box
from freud import box, density
import os
def get_dots(file,microns=2,compare=False,size=2,spacing=5):
'''
Parameters: file : string
The name of the file (an image)
microns : integer
TO DO SCALE FACTOR
compare : bool
Display coordinates of peak local max
size : integer
Size of the max filter
spacing : integer
Minimum dstance between peaks
'''
# put in a single line comment
image = color.rgb2gray(io.imread(file))
i1 = filters.gaussian(image,sigma=.7)
i1 = ndimage.maximum_filter(i1,size=size,mode='constant')
coordinates = peak_local_max(i1, min_distance=spacing,indices=False)
if compare:
io.imshow(image -coordinates)
label_img = measure.label(coordinates)
centroids = []
for region in measure.regionprops(label_img):
centroids.append(region.centroid)
scaled = microns*np.asarray(centroids)/image.shape - [microns/2,microns/2]
return np.append(scaled,np.zeros((len(scaled),1)),axis=1)
def plot_rdf(dots,L,plot=True):
'''
Parameters: dots : ndarray
List of qd centers (x and y coordinates)
L : float
Lenght of the image from which the dots were found, in microns
plot : bool
Decides whether plot is displayed
'''
box = freud.box.Box(L,L,is2D=True)
box.periodic=[True,True,False]
rdf = freud.density.RDF(20,.49,normalize=True)
rdf.compute(system=(box,dots),reset=True)
if plot:
plt.scatter(rdf.bin_centers, rdf.rdf)
plt.xlabel("r (μm)")
plt.ylabel("<g(r)>")
plt.show()
return rdf.bin_centers, rdf.rdf
data_path = './raw_samples/'