-
Notifications
You must be signed in to change notification settings - Fork 12
/
test_example.py
68 lines (53 loc) · 2.13 KB
/
test_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from pathlib import Path
import numpy as np
from alitra import Frame, Map, Orientation, Pose, Position, Transform, align_maps
def test_example():
asset_frame = Frame("asset")
expected_pose: Pose = Pose(
Position(x=40, y=40, z=0, frame=asset_frame),
Orientation.from_euler_array(np.array([-np.pi / 2, 0, 0]), frame=asset_frame),
frame=asset_frame,
)
"""
This test is an example of one way to use alitra for transformations and alignment
between two coordinate frames
Assume we have two maps, './test_data/test_map_config.json' and
'./test_data/test_map_config_asset.json' which represents a map created by a
robot and a map of an asset respectively. First we load the maps as models
"""
here = Path(__file__).parent.resolve()
robot_map_path = Path(here.joinpath("./test_data/test_map_robot.json"))
robot_map: Map = Map.from_config(robot_map_path)
asset_map_path = Path(here.joinpath("./test_data/test_map_asset.json"))
asset_map: Map = Map.from_config(asset_map_path)
"""
Now we create the transform between the two maps, we know that the only difference
between the two maps are a rotation about the z-axis
"""
transform: Transform = align_maps(robot_map, asset_map, rot_axes="z")
"""
We now create a Pose in the robot frame where the robot is standing
"""
position: Position = Position(x=30, y=40, z=0, frame=robot_map.frame)
orientation: Orientation = Orientation.from_euler_array(
np.array([np.pi, 0, 0]), frame=robot_map.frame
)
robot_pose: Pose = Pose(
position=position, orientation=orientation, frame=robot_map.frame
)
"""
Now we can transform the robot_pose into the asset_map to know where on our asset
the robot is
"""
asset_pose = transform.transform_pose(
pose=robot_pose,
from_=robot_pose.frame,
to_=asset_map.frame,
)
assert np.allclose(
expected_pose.orientation.to_euler_array(),
asset_pose.orientation.to_euler_array(),
)
assert np.allclose(
expected_pose.position.to_array(), asset_pose.position.to_array()
)