-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_real_data_script.py
137 lines (107 loc) · 5.71 KB
/
run_real_data_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import numpy as np
from tabulate import tabulate
from motor.motor_recon_met2_real_data import motor_recon_met2, obj1
from plot.plot_results_real_data import plot_real_data_slices
from plot.plot_mean_spectrum_slices import plot_mean_spectrum_slices
import time
import os
import warnings
warnings.filterwarnings("ignore",category=FutureWarning)
# ======================= Define input parameters ==============================
parser = argparse.ArgumentParser(description='Myelin Water Imaging')
parser.add_argument("--path_to_folder", default=None, type=str, help="Path to the folder where the data is located, e.g., /home/Datasets/MET2/", required=True)
parser.add_argument("--input", default=None, type=str, help="Input data, e.g., Data.nii.gz", required=True)
parser.add_argument("--mask", default=None, type=str, help="Brain mask, e.g., Mask.nii.gz", required=True)
parser.add_argument("--minTE", default=None, type=float, help="Minimum Echo Time (TE, units: ms)", required=True)
parser.add_argument("--nTE", default=32, type=int, help="Number of TEs", required=True)
parser.add_argument("--TR", default=None, type=float, help="Repetition Time (units: ms)", required=True)
parser.add_argument("--FA_method",
choices=["spline", "brute-force"],
required=True, type=str, default="spline", help="Method to estimate the flip angle (FA)")
parser.add_argument("--FA_smooth",
choices=["yes", "no"],
required=True, type=str, default="yes", help="Smooth data for estimating the FA")
parser.add_argument("--denoise",
choices=["TV", "NESMA", "None"],
required=True, type=str, default="None", help="Denoising method")
parser.add_argument("--reg_method",
choices=["NNLS", "T2SPARC", "X2", "L_curve", "GCV", "BayesReg"],
required=True, type=str, default="X2", help="Regularization algorithm")
parser.add_argument("--reg_matrix",
choices=["I", "L1", "L2", "InvT2"],
required=True, type=str, default="I", help="Regularization matrix")
parser.add_argument("--numcores", default=-1, type=int, help="Number of cores used in the computation: -1 = all cores")
parser.add_argument("--myelin_T2_cutoff", default=40, type=float, help="Maximum T2 for the myelin compartment: T2 threshold (units: ms)", required=True)
parser.add_argument("--savefig",
choices=["yes", "no"],
required=True, type=str, default="yes", help="Save reconstructed maps in .png")
parser.add_argument("--savefig_slice", default=30, type=int, help="Axial slice to save reconstructed maps, e.g., --Slice=30", required=True)
args = parser.parse_args()
# ==============================================================================
TE_min = args.minTE
nTE = args.nTE
TR = args.TR
FA_method = args.FA_method
FA_smooth = args.FA_smooth
denoise = args.denoise
reg_method = args.reg_method
reg_matrix = args.reg_matrix
path_to_folder = args.path_to_folder
input_data = args.input
mask = args.mask
savefig = args.savefig
Slice = args.savefig_slice
num_cores = args.numcores
myelin_T2_cutoff = args.myelin_T2_cutoff
# ==============================================================================
start_time = time.time()
path_to_data = path_to_folder + input_data
path_to_mask = path_to_folder + mask
if reg_method == 'NNLS' or reg_method =='T2SPARC':
path_to_save_data = path_to_folder + 'recon_all_' + reg_method + '/'
else:
path_to_save_data = path_to_folder + 'recon_all_' + reg_method + '-' + reg_matrix + '/'
#end
if reg_method == 'T2SPARC':
reg_matrix = 'InvT2'
# end
headers = [ 'Selected options ', ' ' ]
table = [
[ '1. Regularization method ', reg_method, ],
[ '2. Regularization matrix ', reg_matrix, ],
[ '3. FA estimation method ', FA_method, ],
[ '4. Smooth image for FA est. ', FA_smooth, ],
[ '5. Denoising method ', denoise, ],
[ '6. TR(ms) ', TR ],
[ '7. Min. TE ', TE_min, ],
[ '8. Number of TEs ', nTE, ],
[ '9. Myelin T2-cutoff (ms) ', myelin_T2_cutoff, ]
]
table_tabulated = tabulate(table, headers=headers)
print ('-------------------------------')
print(table_tabulated)
try:
os.mkdir(path_to_save_data)
except:
print('Warning: this folder already exists. Results will be overwritten')
#end try
# Define experimental parameters
TE_array = TE_min * np.arange(1,nTE+1)
TE_array = np.array(TE_array)
motor_recon_met2(TE_array, path_to_data, path_to_mask, path_to_save_data, TR, reg_method, reg_matrix, denoise, FA_method, FA_smooth, myelin_T2_cutoff, num_cores)
# ----------- PLOT reconstructed maps and spectra for a given Slice ------------
if savefig == 'yes':
plot_real_data_slices(path_to_save_data, path_to_data, Slice, reg_method)
try:
path_to_WM_mask = path_to_folder + 'Segmentation/Data_seg_pve_1.nii.gz'
plot_mean_spectrum_slices(path_to_save_data, path_to_WM_mask, Slice, reg_method)
except:
path_to_WM_mask = path_to_mask
plot_mean_spectrum_slices(path_to_save_data, path_to_WM_mask, Slice, reg_method)
#print ('Warning: WM mask (Data_seg_pve_1.nii.gz) not available for plotting the spectra ')
#end try
# end
print("--- %s seconds ---" % (time.time() - start_time))