diff --git a/ecnet/error_utils.py b/ecnet/error_utils.py index f3fd771..f7a333a 100644 --- a/ecnet/error_utils.py +++ b/ecnet/error_utils.py @@ -19,9 +19,7 @@ def calc_rmse(y_hat, y): try: return(np.sqrt(((np.asarray(y_hat)-np.asarray(y))**2).mean())) except: - print("Error in calculating RMSE. Check input data format.") - raise - sys.exit() + raise ValueError("Error in calculating RMSE. Check input data format.") # Calculates the mean average error between two arguments of equal length def calc_mean_abs_error(y_hat, y): @@ -31,9 +29,7 @@ def calc_mean_abs_error(y_hat, y): try: return(abs(np.asarray(y_hat)-np.asarray(y)).mean()) except: - print("Error in calculating mean average error. Check input data format.") - raise - sys.exit() + raise ValueError("Error in calculating mean average error. Check input data format.") # Calculates the median absoltute error between two arguments of equal length def calc_med_abs_error(y_hat, y): @@ -43,10 +39,7 @@ def calc_med_abs_error(y_hat, y): try: return(np.median(np.absolute(np.asarray(y_hat)-np.asarray(y)))) except: - return("Error in calculating median absolute error. Check input data format.") - raise - sys.exit() - + raise ValueError("Error in calculating median absolute error. Check input data format.") # Calculates the correlation of determination, or r-squared value, between two arguments of equal length def calc_r2(y_hat, y): @@ -59,9 +52,7 @@ def calc_r2(y_hat, y): y_form.append(y[i][0]) y_mean = sum(y_form)/len(y_form) except: - print("Error in calculating r-squared. Check input data format.") - raise - sys.exit() + raise ValueError("Error in calculating r-squared. Check input data format.") try: s_res = np.sum((y_hat-y)**2) s_tot = np.sum((y-y_mean)**2) @@ -72,6 +63,4 @@ def calc_r2(y_hat, y): s_tot = np.sum((np.asarray(y)-y_mean)**2) return(1 - (s_res/s_tot)) except: - print("Error in calculating r-squared. Check input data format.") - raise - sys.exit() + raise ValueError("Error in calculating r-squared. Check input data format.") diff --git a/ecnet/server.py b/ecnet/server.py index cfcef8a..e823a64 100644 --- a/ecnet/server.py +++ b/ecnet/server.py @@ -180,6 +180,7 @@ def test_neural_network(values): amountOfEmployers = amt_employers) # Run the artificial bee colony + abc.printInfo(self.vars['project_print_feedback']) new_hyperparameters = abc.runABC() # Set Server hyperparameters to ABC-calculated hyperparameters @@ -394,7 +395,7 @@ def calc_error(self, *args, dset = None): return error_dict ''' - Outputs the *results* to a specified *filename* + Outputs the *results* obtained from "use_model()" to a specified *filename* ''' def output_results(self, results, filename = 'my_results.csv'): @@ -567,4 +568,4 @@ def __error_fn(self, arg, y_hat, y): elif arg == 'med_abs_error': return ecnet.error_utils.calc_med_abs_error(y_hat, y) else: - raise Exception('ERROR: Unknown/unsupported error function') \ No newline at end of file + raise Exception('ERROR: Unknown/unsupported error function') diff --git a/examples/limit_input_parameters.py b/examples/limit_input_parameters.py index 912828e..ab12b84 100644 --- a/examples/limit_input_parameters.py +++ b/examples/limit_input_parameters.py @@ -7,9 +7,9 @@ # Import data (change 'my_data.csv' to your database name) sv.import_data('my_data.csv') -# Limit the input dimensionality to 15, save to 'my_data_limite.csv' +# Limit the input dimensionality to 15, save to 'my_data_limited.csv' sv.limit_parameters(15, 'my_data_limited.csv') # Use this line instead for limiting the input dimensionality using a genetic algorithm -sv.limit_parameters(15, 'my_data_limited.csv', use_genetic = True) \ No newline at end of file +sv.limit_parameters(15, 'my_data_limited_genetic.csv', use_genetic = True)