From e607950b9d38d64d65fb8c8441d7395c2abf8eac Mon Sep 17 00:00:00 2001 From: Zwart Date: Tue, 9 Jul 2024 16:28:40 -0700 Subject: [PATCH] adding back in some functions --- catalog/R/catalog-common.R | 4 + catalog/R/stac_functions.R | 897 +++++++++++++++++++++++++++++++++++++ 2 files changed, 901 insertions(+) create mode 100644 catalog/R/catalog-common.R create mode 100644 catalog/R/stac_functions.R diff --git a/catalog/R/catalog-common.R b/catalog/R/catalog-common.R new file mode 100644 index 0000000000..8ec479c84d --- /dev/null +++ b/catalog/R/catalog-common.R @@ -0,0 +1,4 @@ +conformsTo = list( + "https=//api.stacspec.org/v1.0.0-rc.1/collections", + "https=//api.stacspec.org/v1.0.0-rc.1/core" +) diff --git a/catalog/R/stac_functions.R b/catalog/R/stac_functions.R new file mode 100644 index 0000000000..cc8f1ba88e --- /dev/null +++ b/catalog/R/stac_functions.R @@ -0,0 +1,897 @@ +## MODEL level functions + +generate_authors <- function(metadata_table, index){ + + x <- list(list('url' = 'pending', + 'name' = 'pending', + 'roles' = list("producer", + "processor", + "licensor")) + ) +} + +generate_model_assets <- function(m_vars, m_duration, aws_path){ + + metadata_json_asset <- list( + "1"= list( + 'type'= 'application/json', + 'title' = 'Model Metadata', + 'href' = paste0("https://", config$endpoint,"/", config$model_metadata_bucket,"/",m,".json"), + 'description' = paste0("Use `jsonlite::fromJSON()` to download the model metadata JSON file. This R code will return metadata provided during the model registration. + \n\n### R\n\n```{r}\n# Use code below\n\nmodel_metadata <- jsonlite::fromJSON(",paste0('"','https://', config$endpoint,'/', config$model_metadata_bucket,'/',m,'.json"'),")\n\n") + ) + ) + + iterator_list <- 1:length(m_vars) + + model_data_assets <- purrr::map(iterator_list, function(i) + list( + 'type'= 'application/x-parquet', + 'title' = paste0('Database Access for ',m_vars[i],' ', m_duration[i]), + 'href' = paste0("s3://anonymous@", + aws_path, + "/parquet/duration=P1D/variable=", m_vars[i], + "/model_id=", m, + "?endpoint_override=",config$endpoint), + 'description' = paste0("Use `arrow` for remote access to the database. This R code will return results for this variable and model combination.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(",paste0("s3://anonymous@", + aws_path, + "/parquet/duration=P1D/variable=", m_vars[i], + "/model_id=", m, + "?endpoint_override=",config$endpoint),")\ndf <- all_results |> dplyr::collect()\n\n``` + \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n") + ) + ) + + model_assets <- c(metadata_json_asset, model_data_assets) + + return(model_assets) +} + + +build_model <- function(model_id, + theme_id, + team_name, + model_description, + start_date, + end_date, + use_metadata, + var_values, + duration_names, + site_values, + model_documentation, + destination_path, + description_path, + aws_download_path, + theme_title, + collection_name, + thumbnail_image_name, + table_schema, + table_description) { + + + preset_keywords <- list("Forecasting", config$project_id) + variables_reformat <- paste(var_values, collapse = ", ") + site_reformat <- paste(site_values, collapse = ", ") + + aws_asset_link <- paste0("s3://anonymous@", + aws_download_path, + "/model_id=", model_id, + "?endpoint_override=",config$endpoint) + + aws_asset_description <- paste0("Use `arrow` for remote access to the database. This R code will return results for forecasts of the variable by the specific model .\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(",aws_asset_link,")\ndf <- all_results |> dplyr::collect()\n\n``` + \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n") + + meta <- list( + "stac_version"= "1.0.0", + "stac_extensions"= list('https://stac-extensions.github.io/table/v1.2.0/schema.json'), + "type"= "Feature", + "id"= model_id, + "bbox"= + list(list(as.numeric(catalog_config$bbox$min_lon), + as.numeric(catalog_config$bbox$max_lat), + as.numeric(catalog_config$bbox$max_lon), + as.numeric(catalog_config$bbox$max_lat))), + "geometry"= list( + "type"= catalog_config$site_type, + "coordinates"= get_site_coords(sites = site_values) + ), + "properties"= list( + #'description' = model_description, + "description" = glue::glue(' + + model info: {model_description} + + Sites: {site_reformat} + + Variables: {variables_reformat} +'), +"start_datetime" = start_date, +"end_datetime" = end_date, +"providers"= c(generate_authors(metadata_table = model_documentation),list( + list( + "url"= catalog_config$host_url, + "name"= catalog_config$host_name, + "roles"= list( + "host" + ) + ) +) +), +"license"= "CC0-1.0", +"keywords"= c(preset_keywords, variables_reformat), +#"table:columns" = stac4cast::build_table_columns_full_bucket(table_schema, table_description) +"table:columns" = build_table_columns_full_bucket(table_schema, table_description) + ), +"collection"= collection_name, +"links"= list( + list( + "rel"= "collection", + 'href' = '../collection.json', + "type"= "application/json", + "title"= theme_title + ), + list( + "rel"= "root", + 'href' = '../../../catalog.json', + "type"= "application/json", + "title"= "Forecast Catalog" + ), + list( + "rel"= "parent", + 'href' = '../collection.json', + "type"= "application/json", + "title"= theme_title + ), + list( + "rel"= "self", + "href" = paste0(model_id,'.json'), + "type"= "application/json", + "title"= "Model Forecast" + )), +"assets"= generate_model_assets(var_values, duration_names, aws_download_path)#, +#pull_images(theme_id,model_id,thumbnail_image_name) + ) + + + dest <- destination_path + json <- file.path(dest, paste0(model_id, ".json")) + + jsonlite::write_json(meta, + json, + pretty=TRUE, + auto_unbox=TRUE) + stac4cast::stac_validate(json) + + rm(meta) +} + +get_grouping <- function(inv_bucket, + theme, + collapse=TRUE) { + + groups <- duckdbfs::open_dataset(glue::glue("s3://anonymous@{inv_bucket}/catalog?endpoint_override=",config$endpoint)) |> + dplyr::filter(...1 == "parquet", ...2 == {theme}) |> + dplyr::select(model_id = ...3, reference_datetime = ...4, date = ...5) |> + dplyr::mutate(model_id = gsub("model_id=", "", model_id), + reference_datetime = + gsub("reference_datetime=", "", reference_datetime), + date = gsub("date=", "", date)) |> + dplyr::collect() + +} + +# DONT USE THIS FUNCTION ANYMORE -- WAS USED FOR ORIGINAL NEON4CAST STAC CODE (KEEPING THIS FOR REFERENCE BUT DELETE EVENTUALLY) +# generate_vars_sites <- function(m_id, theme){ +# +# # if (m_id %in% c('GLEON_JRabaey_temp_physics','GLEON_lm_lag_1day','GLEON_physics','USGSHABs1','air2waterSat_2','fARIMA')){ +# # output_info <- c('pending','pending') +# # } else{ +# +# # do this for each theme / model +# # info_df <- arrow::open_dataset(info_extract$path(glue::glue("{theme}/model_id={m_id}/"))) |> +# # #filter(reference_datetime == "2023-06-18")|> #just grab one EM to limit processing +# # collect() +# # +# info_df <- duckdbfs::open_dataset(glue::glue("s3://anonymous@neon4cast-scores/parquet/{theme}/ +# model_id={model_id}/reference_datetime={reference_datetime}?endpoint_override=sdsc.osn.xsede.org")) |> +# collect() +# +# if ('siteID' %in% names(info_df)){ +# info_df <- info_df |> +# rename(site_id = siteID) +# } +# +# vars_vector <- sort(unique(info_df$variable)) +# sites_vector <- sort(unique(info_df$site_id)) +# +# vars_list <- as.list(sort(unique(info_df$variable))) +# sites_list <- as.list(sort(unique(info_df$site_id))) +# +# # output_vectors <- c(paste(vars_vector, collapse = ', '), +# # paste(sites_vector, collapse = ', ')) +# +# output_list <- list(vars_list,sites_list) +# +# full_object <- list(vars_vector, sites_vector, output_list) +# +# return(full_object) +# } + + +## FORECAST LEVEL FUNCTIONS +generate_model_items <- function(model_list){ + + x <- purrr::map(model_list, function(i) + list( + "rel" = 'item', + 'type'= 'application/json', + 'href' = paste0('model_items/',i,'.json')) + ) + + return(x) +} + +pull_images <- function(theme, m_id, image_name){ + + info_df <- arrow::open_dataset(info_extract$path(glue::glue("{theme}/model_id={m_id}/"))) |> + collect() + + sites_vector <- sort(unique(info_df$site_id)) + + base_path <- catalog_config$base_image_path + + image_assets <- purrr::map(sites_vector, function(i) + #url_validator <- Rcurl::url.exists(file.path(base_path,theme,m_id,i,image_name)) + list( + "href"= file.path(base_path,theme,m_id,i,image_name), + "type"= "image/png", + "title"= paste0('Latest Results for ', i), + "description"= 'Image from s3 storage', + "roles" = list('thumbnail') + ) + ) + + ## check if image rendered successfully on bucket. If not remove from assets + item_remove <- c() + + if (image_name == 'latest_scores.png'){ + for (item in seq.int(1:length(image_assets))){ + url_validator = RCurl::url.exists(image_assets[[item]]$href) + if(url_validator == FALSE){ + print(paste0('Removing ', image_assets[[item]]$title)) + item_remove <- append(item_remove,item) + } + } + if (length(item_remove) > 0){ + image_assets <- image_assets[-item_remove] + } + } + + return(image_assets) + +} + + +get_site_coords <- function(site_metadata, sites){ + + site_df <- read_csv(site_metadata) + + # site_df <- data.frame(site_id = c('fcre', 'bvre', 'ccre'), + # site_lon = c(-79.837217, -79.815936, -79.95856), + # site_lat = c(37.303153, 37.312909, 37.370259)) + + site_lat_lon <- lapply(sites, function(i) c(site_df$latitude[which(site_df[,2] == i)], site_df$longtitude[which(site_df[,2] == i)])) + + return(site_lat_lon) +} + + +generate_group_values <- function(group_values){ + + x <- purrr::map(group_values, function(i) + list( + "rel" = "child", + "type" = "application/json", + "href" = paste0(i,"/collection.json"), + "title" = i) + ) + + return(x) +} + + +build_forecast_scores <- function(table_schema, + theme_id, + table_description, + start_date, + end_date, + id_value, + description_string, + about_string, + about_title, + theme_title, + model_documentation, + destination_path, + aws_download_path, + link_items, + thumbnail_link, + thumbnail_title +){ + + aws_asset_link <- paste0("s3://anonymous@", + aws_download_path, + #"/model_id=", model_id, + "?endpoint_override=",config$endpoint) + + aws_asset_description <- aws_asset_description <- paste0("Use `arrow` for remote access to the database. This R code will return results for the VERA Forecasting Challenge.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(",aws_asset_link,")\ndf <- all_results |> dplyr::collect()\n\n``` + \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n") + forecast_score <- list( + "id" = id_value, + "description" = description_string, + "stac_version"= "1.0.0", + "license"= "CC0-1.0", + "stac_extensions"= list("https://stac-extensions.github.io/scientific/v1.0.0/schema.json", + "https://stac-extensions.github.io/item-assets/v1.0.0/schema.json", + "https://stac-extensions.github.io/table/v1.2.0/schema.json"), + 'type' = 'Collection', + 'links' = c(link_items, #generate_model_items() + list( + list( + "rel" = "child", + "type" = "application/json", + "href" = "models/collection.json", + "title" = "group item" + ), + list( + "rel" = "parent", + "type"= "application/json", + "href" = '../catalog.json' + ), + list( + "rel" = "root", + "type" = "application/json", + "href" = '../catalog.json' + ), + list( + "rel" = "self", + "type" = "application/json", + "href" = 'collection.json' + ), + list( + "rel" = "cite-as", + "href" = catalog_config$citation_doi + ), + list( + "rel" = "about", + "href" = about_string, + "type" = "text/html", + "title" = about_title + ), + list( + "rel" = "describedby", + "href" = catalog_config$dashboard_url, + "title" = catalog_config$dashboard_title, + "type" = "text/html" + ) + )), + "title" = theme_title, + "extent" = list( + "spatial" = list( + 'bbox' = list(list(as.numeric(catalog_config$bbox$min_lon), + as.numeric(catalog_config$bbox$max_lat), + as.numeric(catalog_config$bbox$max_lon), + as.numeric(catalog_config$bbox$max_lat)))), + "temporal" = list( + 'interval' = list(list( + paste0(start_date,"T00:00:00Z"), + paste0(end_date,"T00:00:00Z")) + )) + ), + #"table:columns" = stac4cast::build_table_columns_full_bucket(table_schema, table_description), + "table:columns" = build_table_columns_full_bucket(table_schema, table_description), + + 'assets' = list( + # 'data' = list( + # "href"= model_documentation, + # "type"= "text/csv", + # "roles" = list('data'), + # "title"= "NEON Field Site Metadata", + # "description"= readr::read_file(model_metadata_path) + # ), + 'data' = list( + "href" = aws_asset_link, + "type"= "application/x-parquet", + "title"= 'Database Access', + "roles" = list('data'), + "description"= aws_asset_description + ), + 'thumbnail' = list( + "href"= thumbnail_link, + "type"= "image/JPEG", + "roles" = list('thumbnail'), + "title"= thumbnail_title + ) + ) + ) + + + dest <- destination_path + json <- file.path(dest, "collection.json") + + jsonlite::write_json(forecast_score, + json, + pretty=TRUE, + auto_unbox=TRUE) + stac4cast::stac_validate(json) +} + + +generate_group_variable_items <- function(variables){ + + + var_values <- variables + + x <- purrr::map(var_values, function(i) + list( + "rel" = 'child', + 'type'= 'application/json', + 'href' = paste0(i,'/collection.json')) + ) + + return(x) +} + +generate_variable_model_items <- function(model_list){ + + + #var_values <- variables + + x <- purrr::map(model_list, function(i) + list( + "rel" = 'item', + 'type'= 'application/json', + 'href' = paste0('../../models/model_items/',i,'.json')) + ) + + return(x) +} + +build_group_variables <- function(table_schema, + theme_id, + table_description, + start_date, + end_date, + id_value, + description_string, + about_string, + about_title, + theme_title, + destination_path, + aws_download_path, + group_var_items +){ + + aws_asset_link <- paste0("s3://anonymous@", + aws_download_path, + #"/model_id=", model_id, + "?endpoint_override=",config$endpoint) + + aws_asset_description <- aws_asset_description <- paste0("Use `arrow` for remote access to the database. This R code will return results for the NEON Ecological Forecasting Aquatics theme.\n\n### R\n\n```{r}\n# Use code below\n\nall_results <- arrow::open_dataset(",aws_asset_link,")\ndf <- all_results |> dplyr::collect()\n\n``` + \n\nYou can use dplyr operations before calling `dplyr::collect()` to `summarise`, `select` columns, and/or `filter` rows prior to pulling the data into a local `data.frame`. Reducing the data that is pulled locally will speed up the data download speed and reduce your memory usage.\n\n\n") + forecast_score <- list( + "id" = id_value, + "description" = description_string, + "stac_version"= "1.0.0", + "license"= "CC0-1.0", + "stac_extensions"= list("https://stac-extensions.github.io/scientific/v1.0.0/schema.json", + "https://stac-extensions.github.io/item-assets/v1.0.0/schema.json", + "https://stac-extensions.github.io/table/v1.2.0/schema.json"), + 'type' = 'Collection', + 'links' = c(group_var_items,#generate_group_variable_items(variables = group_var_values) + list( + list( + "rel" = "parent", + "type"= "application/json", + "href" = '../collection.json' + ), + list( + "rel" = "root", + "type" = "application/json", + "href" = '../collection.json' + ), + list( + "rel" = "self", + "type" = "application/json", + "href" = 'collection.json' + ), + list( + "rel" = "cite-as", + "href" = "https://doi.org/10.1002/fee.2616" + ), + list( + "rel" = "about", + "href" = about_string, + "type" = "text/html", + "title" = about_title + ), + list( + "rel" = "describedby", + "href" = "https://ltreb-reservoirs.github.io/vera4cast/", + "title" = "VERA Forecast Challenge Dashboard", + "type" = "text/html" + ) + )), + "title" = theme_title, + "extent" = list( + "spatial" = list( + 'bbox' = list(list(as.numeric(catalog_config$bbox$min_lon), + as.numeric(catalog_config$bbox$max_lat), + as.numeric(catalog_config$bbox$max_lon), + as.numeric(catalog_config$bbox$max_lat)))), + "temporal" = list( + 'interval' = list(list( + paste0(start_date,"T00:00:00Z"), + paste0(end_date,"T00:00:00Z")) + )) + ), + #"table:columns" = stac4cast::build_table_columns_full_bucket(table_schema, table_description), + "table:columns" = build_table_columns_full_bucket(table_schema, table_description), + 'assets' = list( + 'data' = list( + "href" = aws_asset_link, + "type"= "application/x-parquet", + "title"= 'Database Access', + "roles" = list('data'), + "description"= aws_asset_description + ) + ) + ) + + + dest <- destination_path + json <- file.path(dest, 'collection.json') + + jsonlite::write_json(forecast_score, + json, + pretty=TRUE, + auto_unbox=TRUE) + stac4cast::stac_validate(json) +} + +# build_theme <- function(start_date,end_date, id_value, theme_description, theme_title, destination_path, thumbnail_link, thumbnail_title){ +# +# theme <- list( +# "id" = id_value, +# "type" = "Collection", +# "links" = list( +# list( +# "rel" = "child", +# "type" = "application/json", +# "href" = 'forecasts/collection.json', +# "title" = 'forecast item' +# ), +# list( +# "rel" = "child", +# "type" = "application/json", +# "href" = 'scores/collection.json', +# "title" = 'scores item' +# ), +# list( +# "rel"= "parent", +# "type"= "application/json", +# "href"= "../catalog.json", +# "title" = 'parent' +# ), +# list( +# "rel"= "root", +# "type"= "application/json", +# "href"= "../catalog.json", +# "title" = 'root' +# ), +# list( +# "rel"= "self", +# "type"= "application/json", +# "href" = 'collection.json', +# "title" = 'self' +# ), +# list( +# "rel" ="cite-as", +# "href"= catalog_config$citation_link, +# "title" = "citation" +# ), +# list( +# "rel"= "about", +# "href"= catalog_config$about_string, +# "type"= "text/html", +# "title"= catalog_config$about_title +# ), +# list( +# "rel"= "describedby", +# "href"= catalog_config$about_string, +# "title"= catalog_config$about_title, +# "type"= "text/html" +# ) +# ), +# "title"= theme_title, +# 'assets' = list( +# 'thumbnail' = list( +# "href"= thumbnail_link, +# "type"= "image/JPEG", +# "roles" = list('thumbnail'), +# "title"= thumbnail_title +# ) +# ), +# "extent" = list( +# "spatial" = list( +# 'bbox' = list(list(as.numeric(catalog_config$bbox$min_lon), +# as.numeric(catalog_config$bbox$max_lat), +# as.numeric(catalog_config$bbox$max_lon), +# as.numeric(catalog_config$bbox$max_lat))) +# ), +# "temporal" = list( +# 'interval' = list(list( +# paste0(start_date,'T00:00:00Z'), +# paste0(end_date,'T00:00:00Z')) +# )) +# ), +# "license" = "CC0-1.0", +# "keywords" = list( +# "Forecasting", +# "Data", +# "Ecology" +# ), +# "providers" = list( +# list( +# "url"= catalog_config$host_url, +# "name"= catalog_config$host_name, +# "roles" = list( +# "producer", +# "processor", +# "licensor" +# ) +# ), +# list( +# "url"= catalog_config$host_url, +# "name"= catalog_config$host_name, +# "roles" = list('host') +# ) +# ), +# "description" = theme_description, +# "stac_version" = "1.0.0", +# "stac_extensions" = list( +# "https://stac-extensions.github.io/scientific/v1.0.0/schema.json", +# "https://stac-extensions.github.io/item-assets/v1.0.0/schema.json", +# "https://stac-extensions.github.io/table/v1.2.0/schema.json" +# ), +# "publications" = list( +# "doi" = catalog_config$citation_doi, +# "citation"= catalog_config$citation_text +# ) +# ) +# +# +# dest <- destination_path +# json <- file.path(dest, "collection.json") +# +# jsonlite::write_json(theme, +# json, +# pretty=TRUE, +# auto_unbox=TRUE) +# stac4cast::stac_validate(json) +# } + + + + +## ADD PLACEHOLDER FUNCTION FOR STAC4CAST TABLE BUILD +build_table_columns_full_bucket <- function(data_object,description_df){ + + full_string_list <- strsplit(data_object$ToString(),'\n')[[1]] + + #create initial empty list + init_list = vector(mode="list", length = data_object$num_cols) + + ## loop through parquet df and description information to build the list + for (i in seq.int(1,data_object$num_cols)){ + list_items <- strsplit(full_string_list[i],': ')[[1]] + col_list <- list(name = list_items[1], + type = list_items[2], + description = description_df[1,list_items[1]]) + + init_list[[i]] <- col_list + + } + return(init_list) +} + +## WE DON'T USE THE FOLLOWING TWO FUNCITONS ANYMORE. KEEPING THEM FOR REFERENCE BUT DELETE EVENTUALLY +#' build_site_item <- function(theme_id, +#' start_date, +#' end_date, +#' destination_path, +#' theme_title, +#' collection_name, +#' thumbnail_link, +#' site_coords) { +#' +#' +#' preset_keywords <- list("Forecasting", "NEON") +#' +#' meta <- list( +#' "stac_version"= "1.0.0", +#' "stac_extensions"= list('https://stac-extensions.github.io/table/v1.2.0/schema.json'), +#' "type"= "Feature", +#' "id"= collection_name, +#' "bbox"= +#' list(-156.6194, 17.9696, -66.7987, 71.2824), +#' "geometry"= list( +#' "type"= "MultiPoint", +#' "coordinates"= site_coords +#' ), +#' "properties"= list( +#' #'description' = model_description, +#' "description" = 'NEON Site Information', +#' "start_datetime" = start_date, +#' "end_datetime" = end_date, +#' "providers"= list( +#' list( +#' "url"= "https://ecoforecast.org", +#' "name"= "Ecoforecast Challenge", +#' "roles"= list( +#' "host" +#' ) +#' ) +#' ), +#' "license"= "CC0-1.0", +#' "keywords"= c(preset_keywords), +#' "table:columns" = build_site_metadata() +#' ), +#' "collection"= collection_name, +#' "links"= list( +#' list( +#' "rel"= "catalog", +#' 'href' = '../catalog.json', +#' "type"= "application/json", +#' "title"= theme_title +#' ), +#' list( +#' "rel"= "root", +#' 'href' = '../catalog.json', +#' "type"= "application/json", +#' "title"= "EFI Forecast Catalog" +#' ), +#' list( +#' "rel"= "parent", +#' 'href' = '../catalog.json', +#' "type"= "application/json", +#' "title"= theme_title +#' ), +#' list( +#' "rel"= "self", +#' "href" = 'collection.json', +#' "type"= "application/json", +#' "title"= "Raw JSON Text" +#' ), +#' list( +#' "rel" ="cite-as", +#' "href"= "https://doi.org/10.1002/fee.2616", +#' "title" = "citation" +#' ), +#' list( +#' "rel"= "about", +#' "href"= "https://projects.ecoforecast.org/neon4cast-docs/", +#' "type"= "text/html", +#' "title"= "NEON Forecast Challenge Documentation" +#' ), +#' list( +#' "rel"= "describedby", +#' "href"= "https://www.neonscience.org/field-sites/explore-field-sites", +#' "title"= "Explore the NEON Field Sites", +#' "type"= "text/html" +#' )), +#' "assets"= list( +#' 'data' = list( +#' "href" = "https://raw.githubusercontent.com/eco4cast/neon4cast-targets/main/NEON_Field_Site_Metadata_20220412.csv", +#' "type"= "text/plain", +#' "title"= 'NEON Sites Table', +#' "roles" = list('data'), +#' "description"= 'Table that includes information for all NEON sites' +#' ), +#' "thumbnail" = list( +#' "href"= thumbnail_link, +#' "type"= "image/png", +#' "title"= 'NEON Sites Image', +#' "description"= 'Image describing the NEON sites', +#' "roles" = list('thumbnail') +#' ) +#' ) +#' ) +#' +#' +#' dest <- destination_path +#' json <- file.path(dest, "collection.json") +#' +#' jsonlite::write_json(meta, +#' json, +#' pretty=TRUE, +#' auto_unbox=TRUE) +#' stac4cast::stac_validate(json) +#' +#' rm(meta) +#' } + +# +# build_site_metadata <- function(){ +# site_test <- read_csv("https://raw.githubusercontent.com/eco4cast/neon4cast-targets/main/NEON_Field_Site_Metadata_20220412.csv", col_types = cols()) +# +# schema_info <- sapply(site_test, class) +# +# description_create <- data.frame(field_domain_id = 'domain identifier', +# field_site_id = 'site identifier', +# field_site_name = 'site name', +# terrestrial = 'terrestrial theme indicator for site', +# aquatics = 'aquatics theme indicator for site', +# phenology = 'phenology theme indicator for site', +# ticks = 'ticks theme indicator for site', +# beetles = 'beetles theme indicator for site', +# phenocam_code = 'code for phenocam', +# phenocam_roi = 'phenocam region of interest', +# phenocam_vegetation = 'phenocam vegetation identifier', +# field_site_type = 'site theme type', +# field_site_subtype = 'site theme subtype', +# field_colocated_site = 'colocated field site', +# field_site_host = 'site host organization', +# field_site_url = 'site host organization URL', +# field_nonneon_research_allowed = 'indicate whether non-NEON research is allowed at this site', +# field_access_details = 'details for accessing the field site', +# field_neon_field_operations_office = 'NEON field operations office', +# field_latitude = 'field site latitude', +# field_longitude = 'field site longitude', +# field_geodetic_datum = 'geodetic datum for the field site', +# field_utm_northing = 'northing UTM coordinates', +# field_utm_easting = 'easting UTM coordinates', +# field_utm_zone = 'UTM zone for field site', +# field_site_county = 'county where field site is located', +# field_site_state = 'state where field site is located', +# field_site_country = 'country where field site is located', +# field_mean_elevation_m = 'mean elevation of field site in meters', +# field_minimum_elevation_m = 'minimum elevation of field site in meters', +# field_maximum_elevation_m = 'maximum elevation of field site in meters', +# field_mean_annual_temperature_C = 'mean annual temperaure of field site in degC', +# field_mean_annual_precipitation_mm= 'mean annual precipitation of field site in mm', +# field_dominant_wind_direction = 'the dominant wind direction at the field site', +# field_mean_canopy_height_m = 'mean canpoy height at the field site in meters', +# field_dominant_nlcd_classes = 'National Land Cover Database Class for field site', +# field_dominant_plant_species = 'dominant plant species at field site', +# field_usgs_huc = 'USGS Hydrologic Unit Code for the field site', +# field_watershed_name = 'watershed name for the field site', +# field_watershed_size_km2 = 'watershed size of field site in square kilometers', +# field_lake_depth_mean_m = 'mean lake depth of field site in meters', +# field_lake_depth_max_m = 'max lake depth of field site in meters', +# field_tower_height_m = 'height of tower at field site in meters', +# field_usgs_geology_unit = 'USGS geology unit for field site', +# field_megapit_soil_family = 'megapit soil family for field site', +# field_soil_subgroup = 'soild subgroup of field site', +# field_avg_number_of_green_days = 'average number of green days at field site', +# field_avg_green_increase_doy = 'day of year for average green increase at field site', +# field_avg_green_max_doy = 'average day of year with maximum green at field site', +# field_avg_green_decrease_doy = 'avergae day of year of green decrease at field site', +# field_avg_green_min_doy = 'average day of year with minimum green at field site', +# field_phenocams = 'details about phenocams located at each field site', +# field_number_tower_levels = 'number of tower levels at field site', +# neon_url = 'NEON URL for field site') +# +# +# +# +# +# x <- purrr::map(seq.int(1:ncol(site_test)), function(i) +# list( +# "name" = names(site_test)[i], +# 'description'= description_create[,i], +# 'type' = schema_info[[i]] +# ) +# ) +# +# return(x) +# }