diff --git a/NEWS.md b/NEWS.md
index 90327cf46..bf61ca065 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -4,6 +4,14 @@
- New `plot()` method for `performance::check_dag()`.
+- Minor improvements to `plot()` for methods `p_direction()` and `p_significance()`,
+ which also support forthcoming changes in the *parameters* package.
+
+## Bug fixes
+
+- Fixed issue in `plot()` for `performance::check_model()` when package *qqplotr*
+ is not installed.
+
# see 0.8.5
## Major Changes
diff --git a/R/plot.check_predictions.R b/R/plot.check_predictions.R
index 896c416c3..ebacc677a 100644
--- a/R/plot.check_predictions.R
+++ b/R/plot.check_predictions.R
@@ -536,7 +536,7 @@ plot.see_performance_pp_check <- function(x,
size = ggplot2::guide_legend(reverse = TRUE)
)
- return(p)
+ p
}
diff --git a/R/plot.equivalence_test.R b/R/plot.equivalence_test.R
index 510e0c92d..3a3eca517 100644
--- a/R/plot.equivalence_test.R
+++ b/R/plot.equivalence_test.R
@@ -110,7 +110,7 @@ plot.see_equivalence_test <- function(x,
}
# get labels
- labels <- .clean_parameter_names(tmp$predictor, grid = !is.null(n_columns))
+ axis_labels <- .clean_parameter_names(tmp$predictor, grid = !is.null(n_columns))
tmp <- .fix_facet_names(tmp)
@@ -126,11 +126,11 @@ plot.see_equivalence_test <- function(x,
fill.color <- fill.color[sort(unique(match(x$ROPE_Equivalence, c("Accepted", "Rejected", "Undecided"))))]
- add.args <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x)
+ add.args <- lapply(match.call(expand.dots = FALSE)[["..."]], function(x) x)
if ("colors" %in% names(add.args)) fill.color <- eval(add.args[["colors"]])
if ("x.title" %in% names(add.args)) x.title <- eval(add.args[["x.title"]])
if ("legend.title" %in% names(add.args)) legend.title <- eval(add.args[["legend.title"]])
- if ("labels" %in% names(add.args)) labels <- eval(add.args[["labels"]])
+ if ("labels" %in% names(add.args)) axis_labels <- eval(add.args[["labels"]])
rope.line.alpha <- 1.25 * rope_alpha
if (rope.line.alpha > 1) rope.line.alpha <- 1
@@ -170,7 +170,7 @@ plot.see_equivalence_test <- function(x,
) +
scale_fill_manual(values = fill.color) +
labs(x = x.title, y = NULL, fill = legend.title) +
- scale_y_discrete(labels = labels) +
+ scale_y_discrete(labels = axis_labels) +
theme(legend.position = "bottom")
if (!is.null(n_columns)) {
@@ -193,10 +193,8 @@ plot.see_equivalence_test <- function(x,
p <- p + facet_wrap(~Component, scales = "free", ncol = n_columns)
}
}
- } else {
- if (length(unique(tmp$HDI)) > 1L) {
- p <- p + facet_wrap(~HDI, scales = "free", ncol = n_columns)
- }
+ } else if (length(unique(tmp$HDI)) > 1L) {
+ p <- p + facet_wrap(~HDI, scales = "free", ncol = n_columns)
}
p
@@ -259,7 +257,7 @@ plot.see_equivalence_test_df <- function(x,
tmp$predictor <- factor(tmp$predictor, levels = rev(unique(tmp$predictor)))
# get labels
- labels <- .clean_parameter_names(tmp$predictor, grid = !is.null(n_columns))
+ axis_labels <- .clean_parameter_names(tmp$predictor, grid = !is.null(n_columns))
# check for user defined arguments
@@ -273,11 +271,11 @@ plot.see_equivalence_test_df <- function(x,
fill.color <- fill.color[sort(unique(match(x$ROPE_Equivalence, c("Accepted", "Rejected", "Undecided"))))]
- add.args <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x)
+ add.args <- lapply(match.call(expand.dots = FALSE)[["..."]], function(x) x)
if ("colors" %in% names(add.args)) fill.color <- eval(add.args[["colors"]])
if ("x.title" %in% names(add.args)) x.title <- eval(add.args[["x.title"]])
if ("legend.title" %in% names(add.args)) legend.title <- eval(add.args[["legend.title"]])
- if ("labels" %in% names(add.args)) labels <- eval(add.args[["labels"]])
+ if ("labels" %in% names(add.args)) axis_labels <- eval(add.args[["labels"]])
rope.line.alpha <- 1.25 * rope_alpha
@@ -317,7 +315,7 @@ plot.see_equivalence_test_df <- function(x,
) +
scale_fill_manual(values = fill.color) +
labs(x = x.title, y = NULL, fill = legend.title) +
- scale_y_discrete(labels = labels) +
+ scale_y_discrete(labels = axis_labels) +
theme(legend.position = "bottom")
if (length(unique(tmp$HDI)) > 1L) {
@@ -390,11 +388,10 @@ plot.see_equivalence_test_lm <- function(x,
fill.color <- fill.color[sort(unique(match(x$ROPE_Equivalence, c("Accepted", "Rejected", "Undecided"))))]
- add.args <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x)
+ add.args <- lapply(match.call(expand.dots = FALSE)[["..."]], function(x) x)
if ("colors" %in% names(add.args)) fill.color <- eval(add.args[["colors"]])
if ("x.title" %in% names(add.args)) x.title <- eval(add.args[["x.title"]])
if ("legend.title" %in% names(add.args)) legend.title <- eval(add.args[["legend.title"]])
- if ("labels" %in% names(add.args)) labels <- eval(add.args[["labels"]])
rope.line.alpha <- 1.25 * rope_alpha
if (rope.line.alpha > 1) rope.line.alpha <- 1
diff --git a/R/plot.p_direction.R b/R/plot.p_direction.R
index e9827f948..56dc24f3a 100644
--- a/R/plot.p_direction.R
+++ b/R/plot.p_direction.R
@@ -27,17 +27,17 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) {
data <- data[, x$Parameter, drop = FALSE]
dataplot <- data.frame()
for (i in names(data)) {
- if (!is.null(params)) {
+ if (!is.null(params) && all(c("Effects", "Component") %in% colnames(params))) {
dataplot <- rbind(
dataplot,
cbind(
- .compute_densities_pd(data[[i]], name = i),
- "Effects" = params$Effects[params$Parameter == i],
- "Component" = params$Component[params$Parameter == i]
+ .compute_densities_pd(data[[i]], name = i, null = attr(x, "null")),
+ Effects = params$Effects[params$Parameter == i],
+ Component = params$Component[params$Parameter == i]
)
)
} else {
- dataplot <- rbind(dataplot, .compute_densities_pd(data[[i]], name = i))
+ dataplot <- rbind(dataplot, .compute_densities_pd(data[[i]], name = i, null = attr(x, "null")))
}
}
@@ -60,7 +60,7 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) {
}
} else {
levels_order <- NULL
- dataplot <- .compute_densities_pd(data[, 1], name = "Posterior")
+ dataplot <- .compute_densities_pd(data[, 1], name = "Posterior", null = attr(x, "null"))
}
dataplot <- do.call(
@@ -70,7 +70,7 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) {
list(dataplot$y, dataplot$fill),
function(df) {
df$n <- nrow(df)
- return(df)
+ df
}
)
)
@@ -81,7 +81,7 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) {
dataplot$y,
function(df) {
df$prop <- df$n / nrow(df)
- return(df)
+ df
}
)
)
@@ -108,10 +108,10 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) {
dataplot <- .fix_facet_names(dataplot)
attr(dataplot, "info") <- list(
- "xlab" = "Possible parameter values",
- "ylab" = ylab,
- "legend_fill" = "Effect direction",
- "title" = "Probability of Direction"
+ xlab = "Possible parameter values",
+ ylab = ylab,
+ legend_fill = "Effect direction",
+ title = "Probability of Direction"
)
class(dataplot) <- c("data_plot", "see_p_direction", class(dataplot))
@@ -121,11 +121,14 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) {
#' @keywords internal
-.compute_densities_pd <- function(x, name = "Y") {
+.compute_densities_pd <- function(x, name = "Y", null = 0) {
out <- .as.data.frame_density(
stats::density(x)
)
- out$fill <- ifelse(out$x < 0, "Negative", "Positive")
+ if (is.null(null)) {
+ null <- 0
+ }
+ out$fill <- ifelse(out$x < null, "Negative", "Positive")
out$height <- as.vector(
(out$y - min(out$y, na.rm = TRUE)) /
diff(range(out$y, na.rm = TRUE), na.rm = TRUE)
@@ -182,7 +185,7 @@ plot.see_p_direction <- function(x,
params <- unique(x$y)
# get labels
- labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns))
+ axis_labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns))
insight::check_if_installed("ggridges")
@@ -216,7 +219,7 @@ plot.see_p_direction <- function(x,
if (length(unique(x$y)) == 1 && is.numeric(x$y)) {
p <- p + scale_y_continuous(breaks = NULL, labels = NULL)
} else {
- p <- p + scale_y_discrete(labels = labels)
+ p <- p + scale_y_discrete(labels = axis_labels)
}
diff --git a/R/plot.p_significance.R b/R/plot.p_significance.R
index 9e45c4f80..e8a62e791 100644
--- a/R/plot.p_significance.R
+++ b/R/plot.p_significance.R
@@ -12,7 +12,6 @@ data_plot.p_significance <- function(x,
if (inherits(data, "emmGrid")) {
insight::check_if_installed("emmeans")
-
data <- as.data.frame(as.matrix(emmeans::as.mcmc.emmGrid(data, names = FALSE)))
} else if (inherits(data, c("stanreg", "brmsfit"))) {
params <- insight::clean_parameters(data)
@@ -32,19 +31,19 @@ data_plot.p_significance <- function(x,
data <- data[, x$Parameter, drop = FALSE]
dataplot <- data.frame()
for (i in names(data)) {
- if (!is.null(params)) {
+ if (is.null(params) || !all(c("Effects", "Component") %in% colnames(params))) {
dataplot <- rbind(
dataplot,
- cbind(
- .compute_densities_ps(data[[i]], name = i, threshold = attr(x, "threshold")),
- "Effects" = params$Effects[params$Parameter == i],
- "Component" = params$Component[params$Parameter == i]
- )
+ .compute_densities_ps(data[[i]], name = i, threshold = attr(x, "threshold"))
)
} else {
dataplot <- rbind(
dataplot,
- .compute_densities_ps(data[[i]], name = i, threshold = attr(x, "threshold"))
+ cbind(
+ .compute_densities_ps(data[[i]], name = i, threshold = attr(x, "threshold")),
+ Effects = params$Effects[params$Parameter == i],
+ Component = params$Component[params$Parameter == i]
+ )
)
}
}
@@ -68,7 +67,7 @@ data_plot.p_significance <- function(x,
}
} else {
levels_order <- NULL
- dataplot <- .compute_densities_pd(data[, 1], name = "Posterior")
+ dataplot <- .compute_densities_ps(data[, 1], name = "Posterior", threshold = attr(x, "threshold"))
}
dataplot <- do.call(
@@ -78,7 +77,7 @@ data_plot.p_significance <- function(x,
list(dataplot$y, dataplot$fill),
function(df) {
df$n <- nrow(df)
- return(df)
+ df
}
)
)
@@ -89,7 +88,7 @@ data_plot.p_significance <- function(x,
dataplot$y,
function(df) {
df$prop <- df$n / nrow(df)
- return(df)
+ df
}
)
)
@@ -116,10 +115,10 @@ data_plot.p_significance <- function(x,
dataplot <- .fix_facet_names(dataplot)
attr(dataplot, "info") <- list(
- "xlab" = "Possible parameter values",
- "ylab" = ylab,
- "legend_fill" = "Probability",
- "title" = "Practical Significance"
+ xlab = "Possible parameter values",
+ ylab = ylab,
+ legend_fill = "Probability",
+ title = "Practical Significance"
)
class(dataplot) <- c("data_plot", "see_p_significance", class(dataplot))
@@ -132,18 +131,35 @@ data_plot.p_significance <- function(x,
.compute_densities_ps <- function(x, name = "Y", threshold = 0) {
out <- .as.data.frame_density(stats::density(x))
- fifty_cents <- sum(out$y[out$x > threshold]) > (sum(out$y) / 2)
+ # sanity check
+ if (is.null(threshold)) {
+ threshold <- 0
+ }
+
+ # make sure we have a vector of length 2
+ if (length(threshold) == 1) {
+ threshold <- c(-1 * threshold, threshold)
+ }
+
+ # find out the probability mass larger or lower than the ROPE (outside)
+ p_mass_ht_rope <- sum(out$y[out$x > threshold[2]])
+ p_mass_lt_rope <- sum(out$y[out$x < threshold[1]])
+
+ # find out whether probability mass "above" ROPE is larger than the probability
+ # mass that is on the left (negative) side of the ROPE
+ fifty_cents <- p_mass_ht_rope > p_mass_lt_rope
out$fill <- "Less Probable"
- out$fill[abs(out$x) < threshold] <- "ROPE"
- out$fill[(out$x > threshold)] <- ifelse(fifty_cents, "Significant", "Less Probable")
- out$fill[out$x < (-1 * threshold)] <- ifelse(fifty_cents, "Less Probable", "Significant")
+ out$fill[out$x > threshold[1] & out$x < threshold[2]] <- "ROPE"
+ out$fill[out$x > threshold[2]] <- ifelse(fifty_cents, "Significant", "Less Probable")
+ out$fill[out$x < threshold[1]] <- ifelse(fifty_cents, "Less Probable", "Significant")
out$height <- out$y
out$y <- name
# normalize
- out$height <- as.vector((out$height - min(out$height, na.rm = TRUE)) / diff(range(out$height, na.rm = TRUE), na.rm = TRUE))
+ range_diff <- diff(range(out$height, na.rm = TRUE), na.rm = TRUE)
+ out$height <- as.vector((out$height - min(out$height, na.rm = TRUE)) / range_diff)
out
}
@@ -194,7 +210,7 @@ plot.see_p_significance <- function(x,
params <- unique(x$y)
# get labels
- labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns))
+ axis_labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns))
insight::check_if_installed("ggridges")
@@ -235,7 +251,7 @@ plot.see_p_significance <- function(x,
if (length(unique(x$y)) == 1L && is.numeric(x$y)) {
p <- p + scale_y_continuous(breaks = NULL, labels = NULL)
} else {
- p <- p + scale_y_discrete(labels = labels)
+ p <- p + scale_y_discrete(labels = axis_labels)
}
diff --git a/R/plot.performance_simres.R b/R/plot.performance_simres.R
index a9c5801d6..a8d96d010 100644
--- a/R/plot.performance_simres.R
+++ b/R/plot.performance_simres.R
@@ -45,6 +45,7 @@ plot.see_performance_simres <- function(x,
...) {
# need DHARMa to be installed
insight::check_if_installed("DHARMa")
+ qqplotr_installed <- insight::check_if_installed("qqplotr", quietly = TRUE)
# extract data, if from check_residuals
if (inherits(x, "see_check_residuals")) {
@@ -56,12 +57,21 @@ plot.see_performance_simres <- function(x,
res <- stats::residuals(x)
dp <- list(min = 0, max = 1, lower.tail = TRUE, log.p = FALSE)
dp_band <- list(min = 0, max = 1)
- dfun <- "unif"
+ # "distribution" argument has different handling in qqplotr
+ if (qqplotr_installed) {
+ dfun <- "unif"
+ } else {
+ dfun <- stats::qunif
+ }
} else if (identical(transform, stats::qnorm)) {
res <- stats::residuals(x, quantileFunction = stats::qnorm)
dp <- list(mean = 0, sd = 1)
dp_band <- list(mean = 0, sd = 1)
- dfun <- "norm"
+ if (qqplotr_installed) {
+ dfun <- "norm"
+ } else {
+ dfun <- stats::qnorm
+ }
} else if (is.character(transform)) {
insight::format_error("`transform` must be a function, not a string value.")
} else {
@@ -76,7 +86,7 @@ plot.see_performance_simres <- function(x,
)
# when we have package qqplotr, we can add confidence bands
- if (requireNamespace("qqplotr", quietly = TRUE)) {
+ if (qqplotr_installed) {
qq_stuff <- list(
qqplotr::stat_qq_band(
distribution = dfun,
diff --git a/R/utils.R b/R/utils.R
index 87cbf49ac..c9bcbd3d1 100644
--- a/R/utils.R
+++ b/R/utils.R
@@ -42,6 +42,8 @@
# clean parameters names
params <- gsub("(b_|bs_|bsp_|bcs_)(.*)", "\\2", params, perl = TRUE)
+ params <- gsub("^cond_(.*)", "\\1 (Conditional)", params, perl = TRUE)
+ params <- gsub("(.*)_cond$", "\\1 (Conditional)", params, perl = TRUE)
params <- gsub("^zi_(.*)", "\\1 (Zero-Inflated)", params, perl = TRUE)
params <- gsub("(.*)_zi$", "\\1 (Zero-Inflated)", params, perl = TRUE)
params <- gsub("(.*)_disp$", "\\1 (Dispersion)", params, perl = TRUE)
diff --git a/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ1.svg b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ1.svg
new file mode 100644
index 000000000..d82f7eb17
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ1.svg
@@ -0,0 +1,71 @@
+
+
diff --git a/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ2.svg b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ2.svg
new file mode 100644
index 000000000..051edbc2f
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ2.svg
@@ -0,0 +1,70 @@
+
+
diff --git a/tests/testthat/_snaps/plot.p_direction/plot-p-dir-glmmtmb.svg b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-glmmtmb.svg
new file mode 100644
index 000000000..efe463ee9
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-glmmtmb.svg
@@ -0,0 +1,71 @@
+
+
diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ1.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ1.svg
new file mode 100644
index 000000000..ebdf426d4
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ1.svg
@@ -0,0 +1,63 @@
+
+
diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ2.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ2.svg
new file mode 100644
index 000000000..87dd6b156
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ2.svg
@@ -0,0 +1,66 @@
+
+
diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ3.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ3.svg
new file mode 100644
index 000000000..5ef9d53da
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ3.svg
@@ -0,0 +1,66 @@
+
+
diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-glmmtmb.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-glmmtmb.svg
new file mode 100644
index 000000000..f444dd4cc
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-glmmtmb.svg
@@ -0,0 +1,64 @@
+
+
diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-simple-threshold.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-simple-threshold.svg
new file mode 100644
index 000000000..dd97f5514
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-simple-threshold.svg
@@ -0,0 +1,52 @@
+
+
diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-threshold-2.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-threshold-2.svg
new file mode 100644
index 000000000..7c93bef30
--- /dev/null
+++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-threshold-2.svg
@@ -0,0 +1,52 @@
+
+
diff --git a/tests/testthat/test-plot.p_direction.R b/tests/testthat/test-plot.p_direction.R
index 2fbcfa2b1..7baf39def 100644
--- a/tests/testthat/test-plot.p_direction.R
+++ b/tests/testthat/test-plot.p_direction.R
@@ -7,3 +7,41 @@ test_that("`plot.see_p_direction()` works", {
expect_s3_class(plot(result), "gg")
})
+
+skip_on_cran()
+skip_if_not_installed("bayestestR", minimum_version = "0.14.1")
+skip_if_not_installed("parameters", minimum_version = "0.22.3")
+
+test_that("`plot.see_p_direction works {parameters}}", {
+ skip_if_not_installed("vdiffr")
+ data(qol_cancer, package = "parameters")
+ model <- lm(QoL ~ time + age + education, data = qol_cancer)
+ set.seed(123)
+ out <- parameters::p_direction(model)
+ vdiffr::expect_doppelganger(
+ title = "plot.p_dir_frequ1",
+ fig = plot(out)
+ )
+ set.seed(123)
+ out <- parameters::p_direction(model, null = 2)
+ vdiffr::expect_doppelganger(
+ title = "plot.p_dir_frequ2",
+ fig = plot(out)
+ )
+})
+
+test_that("plot p_direction, glmmTMB", {
+ skip_if_not_installed("glmmTMB")
+ data(Salamanders, package = "glmmTMB")
+ m1 <- glmmTMB::glmmTMB(count ~ mined + cover + (1 | site),
+ zi = ~mined,
+ family = poisson,
+ data = Salamanders
+ )
+ set.seed(123)
+ out <- parameters::p_direction(m1)
+ vdiffr::expect_doppelganger(
+ title = "plot.p_dir_glmmTMB",
+ fig = plot(out)
+ )
+})
diff --git a/tests/testthat/test-plot.p_significance.R b/tests/testthat/test-plot.p_significance.R
index e2bc1ec1b..fcf981658 100644
--- a/tests/testthat/test-plot.p_significance.R
+++ b/tests/testthat/test-plot.p_significance.R
@@ -7,3 +7,63 @@ test_that("`plot.see_p_significance()` works", {
expect_s3_class(plot(result), "gg")
})
+
+skip_on_cran()
+skip_if_not_installed("bayestestR", minimum_version = "0.14.1")
+skip_if_not_installed("parameters", minimum_version = "0.22.3")
+
+test_that("`plot.see_p_significance works for two thresholds", {
+ skip_if_not_installed("vdiffr")
+ set.seed(123)
+ x <- rnorm(1000, 1, 1.2)
+ out <- bayestestR::p_significance(x)
+ vdiffr::expect_doppelganger(
+ title = "plot.p_sig_simple_threshold",
+ fig = plot(out)
+ )
+ out <- bayestestR::p_significance(x, threshold = c(-0.2, 0.5))
+ vdiffr::expect_doppelganger(
+ title = "plot.p_sig_threshold_2",
+ fig = plot(out)
+ )
+})
+
+test_that("`plot.see_p_significance works {parameters}}", {
+ skip_if_not_installed("vdiffr")
+ data(qol_cancer, package = "parameters")
+ model <- lm(QoL ~ time + age + education, data = qol_cancer)
+ set.seed(123)
+ out <- parameters::p_significance(model)
+ vdiffr::expect_doppelganger(
+ title = "plot.p_sig_frequ1",
+ fig = plot(out)
+ )
+ set.seed(123)
+ out <- parameters::p_significance(model, threshold = c(-0.5, 3.3))
+ vdiffr::expect_doppelganger(
+ title = "plot.p_sig_frequ2",
+ fig = plot(out)
+ )
+ set.seed(123)
+ out <- parameters::p_significance(model, threshold = c(-0.5, 5))
+ vdiffr::expect_doppelganger(
+ title = "plot.p_sig_frequ3",
+ fig = plot(out)
+ )
+})
+
+test_that("plot p_significance, glmmTMB", {
+ skip_if_not_installed("glmmTMB")
+ data(Salamanders, package = "glmmTMB")
+ m1 <- glmmTMB::glmmTMB(count ~ mined + cover + (1 | site),
+ zi = ~mined,
+ family = poisson,
+ data = Salamanders
+ )
+ set.seed(123)
+ out <- parameters::p_significance(m1)
+ vdiffr::expect_doppelganger(
+ title = "plot.p_sig_glmmTMB",
+ fig = plot(out)
+ )
+})