diff --git a/NEWS.md b/NEWS.md index 90327cf46..bf61ca065 100644 --- a/NEWS.md +++ b/NEWS.md @@ -4,6 +4,14 @@ - New `plot()` method for `performance::check_dag()`. +- Minor improvements to `plot()` for methods `p_direction()` and `p_significance()`, + which also support forthcoming changes in the *parameters* package. + +## Bug fixes + +- Fixed issue in `plot()` for `performance::check_model()` when package *qqplotr* + is not installed. + # see 0.8.5 ## Major Changes diff --git a/R/plot.check_predictions.R b/R/plot.check_predictions.R index 896c416c3..ebacc677a 100644 --- a/R/plot.check_predictions.R +++ b/R/plot.check_predictions.R @@ -536,7 +536,7 @@ plot.see_performance_pp_check <- function(x, size = ggplot2::guide_legend(reverse = TRUE) ) - return(p) + p } diff --git a/R/plot.equivalence_test.R b/R/plot.equivalence_test.R index 510e0c92d..3a3eca517 100644 --- a/R/plot.equivalence_test.R +++ b/R/plot.equivalence_test.R @@ -110,7 +110,7 @@ plot.see_equivalence_test <- function(x, } # get labels - labels <- .clean_parameter_names(tmp$predictor, grid = !is.null(n_columns)) + axis_labels <- .clean_parameter_names(tmp$predictor, grid = !is.null(n_columns)) tmp <- .fix_facet_names(tmp) @@ -126,11 +126,11 @@ plot.see_equivalence_test <- function(x, fill.color <- fill.color[sort(unique(match(x$ROPE_Equivalence, c("Accepted", "Rejected", "Undecided"))))] - add.args <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x) + add.args <- lapply(match.call(expand.dots = FALSE)[["..."]], function(x) x) if ("colors" %in% names(add.args)) fill.color <- eval(add.args[["colors"]]) if ("x.title" %in% names(add.args)) x.title <- eval(add.args[["x.title"]]) if ("legend.title" %in% names(add.args)) legend.title <- eval(add.args[["legend.title"]]) - if ("labels" %in% names(add.args)) labels <- eval(add.args[["labels"]]) + if ("labels" %in% names(add.args)) axis_labels <- eval(add.args[["labels"]]) rope.line.alpha <- 1.25 * rope_alpha if (rope.line.alpha > 1) rope.line.alpha <- 1 @@ -170,7 +170,7 @@ plot.see_equivalence_test <- function(x, ) + scale_fill_manual(values = fill.color) + labs(x = x.title, y = NULL, fill = legend.title) + - scale_y_discrete(labels = labels) + + scale_y_discrete(labels = axis_labels) + theme(legend.position = "bottom") if (!is.null(n_columns)) { @@ -193,10 +193,8 @@ plot.see_equivalence_test <- function(x, p <- p + facet_wrap(~Component, scales = "free", ncol = n_columns) } } - } else { - if (length(unique(tmp$HDI)) > 1L) { - p <- p + facet_wrap(~HDI, scales = "free", ncol = n_columns) - } + } else if (length(unique(tmp$HDI)) > 1L) { + p <- p + facet_wrap(~HDI, scales = "free", ncol = n_columns) } p @@ -259,7 +257,7 @@ plot.see_equivalence_test_df <- function(x, tmp$predictor <- factor(tmp$predictor, levels = rev(unique(tmp$predictor))) # get labels - labels <- .clean_parameter_names(tmp$predictor, grid = !is.null(n_columns)) + axis_labels <- .clean_parameter_names(tmp$predictor, grid = !is.null(n_columns)) # check for user defined arguments @@ -273,11 +271,11 @@ plot.see_equivalence_test_df <- function(x, fill.color <- fill.color[sort(unique(match(x$ROPE_Equivalence, c("Accepted", "Rejected", "Undecided"))))] - add.args <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x) + add.args <- lapply(match.call(expand.dots = FALSE)[["..."]], function(x) x) if ("colors" %in% names(add.args)) fill.color <- eval(add.args[["colors"]]) if ("x.title" %in% names(add.args)) x.title <- eval(add.args[["x.title"]]) if ("legend.title" %in% names(add.args)) legend.title <- eval(add.args[["legend.title"]]) - if ("labels" %in% names(add.args)) labels <- eval(add.args[["labels"]]) + if ("labels" %in% names(add.args)) axis_labels <- eval(add.args[["labels"]]) rope.line.alpha <- 1.25 * rope_alpha @@ -317,7 +315,7 @@ plot.see_equivalence_test_df <- function(x, ) + scale_fill_manual(values = fill.color) + labs(x = x.title, y = NULL, fill = legend.title) + - scale_y_discrete(labels = labels) + + scale_y_discrete(labels = axis_labels) + theme(legend.position = "bottom") if (length(unique(tmp$HDI)) > 1L) { @@ -390,11 +388,10 @@ plot.see_equivalence_test_lm <- function(x, fill.color <- fill.color[sort(unique(match(x$ROPE_Equivalence, c("Accepted", "Rejected", "Undecided"))))] - add.args <- lapply(match.call(expand.dots = FALSE)$`...`, function(x) x) + add.args <- lapply(match.call(expand.dots = FALSE)[["..."]], function(x) x) if ("colors" %in% names(add.args)) fill.color <- eval(add.args[["colors"]]) if ("x.title" %in% names(add.args)) x.title <- eval(add.args[["x.title"]]) if ("legend.title" %in% names(add.args)) legend.title <- eval(add.args[["legend.title"]]) - if ("labels" %in% names(add.args)) labels <- eval(add.args[["labels"]]) rope.line.alpha <- 1.25 * rope_alpha if (rope.line.alpha > 1) rope.line.alpha <- 1 diff --git a/R/plot.p_direction.R b/R/plot.p_direction.R index e9827f948..56dc24f3a 100644 --- a/R/plot.p_direction.R +++ b/R/plot.p_direction.R @@ -27,17 +27,17 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) { data <- data[, x$Parameter, drop = FALSE] dataplot <- data.frame() for (i in names(data)) { - if (!is.null(params)) { + if (!is.null(params) && all(c("Effects", "Component") %in% colnames(params))) { dataplot <- rbind( dataplot, cbind( - .compute_densities_pd(data[[i]], name = i), - "Effects" = params$Effects[params$Parameter == i], - "Component" = params$Component[params$Parameter == i] + .compute_densities_pd(data[[i]], name = i, null = attr(x, "null")), + Effects = params$Effects[params$Parameter == i], + Component = params$Component[params$Parameter == i] ) ) } else { - dataplot <- rbind(dataplot, .compute_densities_pd(data[[i]], name = i)) + dataplot <- rbind(dataplot, .compute_densities_pd(data[[i]], name = i, null = attr(x, "null"))) } } @@ -60,7 +60,7 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) { } } else { levels_order <- NULL - dataplot <- .compute_densities_pd(data[, 1], name = "Posterior") + dataplot <- .compute_densities_pd(data[, 1], name = "Posterior", null = attr(x, "null")) } dataplot <- do.call( @@ -70,7 +70,7 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) { list(dataplot$y, dataplot$fill), function(df) { df$n <- nrow(df) - return(df) + df } ) ) @@ -81,7 +81,7 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) { dataplot$y, function(df) { df$prop <- df$n / nrow(df) - return(df) + df } ) ) @@ -108,10 +108,10 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) { dataplot <- .fix_facet_names(dataplot) attr(dataplot, "info") <- list( - "xlab" = "Possible parameter values", - "ylab" = ylab, - "legend_fill" = "Effect direction", - "title" = "Probability of Direction" + xlab = "Possible parameter values", + ylab = ylab, + legend_fill = "Effect direction", + title = "Probability of Direction" ) class(dataplot) <- c("data_plot", "see_p_direction", class(dataplot)) @@ -121,11 +121,14 @@ data_plot.p_direction <- function(x, data = NULL, show_intercept = FALSE, ...) { #' @keywords internal -.compute_densities_pd <- function(x, name = "Y") { +.compute_densities_pd <- function(x, name = "Y", null = 0) { out <- .as.data.frame_density( stats::density(x) ) - out$fill <- ifelse(out$x < 0, "Negative", "Positive") + if (is.null(null)) { + null <- 0 + } + out$fill <- ifelse(out$x < null, "Negative", "Positive") out$height <- as.vector( (out$y - min(out$y, na.rm = TRUE)) / diff(range(out$y, na.rm = TRUE), na.rm = TRUE) @@ -182,7 +185,7 @@ plot.see_p_direction <- function(x, params <- unique(x$y) # get labels - labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns)) + axis_labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns)) insight::check_if_installed("ggridges") @@ -216,7 +219,7 @@ plot.see_p_direction <- function(x, if (length(unique(x$y)) == 1 && is.numeric(x$y)) { p <- p + scale_y_continuous(breaks = NULL, labels = NULL) } else { - p <- p + scale_y_discrete(labels = labels) + p <- p + scale_y_discrete(labels = axis_labels) } diff --git a/R/plot.p_significance.R b/R/plot.p_significance.R index 9e45c4f80..e8a62e791 100644 --- a/R/plot.p_significance.R +++ b/R/plot.p_significance.R @@ -12,7 +12,6 @@ data_plot.p_significance <- function(x, if (inherits(data, "emmGrid")) { insight::check_if_installed("emmeans") - data <- as.data.frame(as.matrix(emmeans::as.mcmc.emmGrid(data, names = FALSE))) } else if (inherits(data, c("stanreg", "brmsfit"))) { params <- insight::clean_parameters(data) @@ -32,19 +31,19 @@ data_plot.p_significance <- function(x, data <- data[, x$Parameter, drop = FALSE] dataplot <- data.frame() for (i in names(data)) { - if (!is.null(params)) { + if (is.null(params) || !all(c("Effects", "Component") %in% colnames(params))) { dataplot <- rbind( dataplot, - cbind( - .compute_densities_ps(data[[i]], name = i, threshold = attr(x, "threshold")), - "Effects" = params$Effects[params$Parameter == i], - "Component" = params$Component[params$Parameter == i] - ) + .compute_densities_ps(data[[i]], name = i, threshold = attr(x, "threshold")) ) } else { dataplot <- rbind( dataplot, - .compute_densities_ps(data[[i]], name = i, threshold = attr(x, "threshold")) + cbind( + .compute_densities_ps(data[[i]], name = i, threshold = attr(x, "threshold")), + Effects = params$Effects[params$Parameter == i], + Component = params$Component[params$Parameter == i] + ) ) } } @@ -68,7 +67,7 @@ data_plot.p_significance <- function(x, } } else { levels_order <- NULL - dataplot <- .compute_densities_pd(data[, 1], name = "Posterior") + dataplot <- .compute_densities_ps(data[, 1], name = "Posterior", threshold = attr(x, "threshold")) } dataplot <- do.call( @@ -78,7 +77,7 @@ data_plot.p_significance <- function(x, list(dataplot$y, dataplot$fill), function(df) { df$n <- nrow(df) - return(df) + df } ) ) @@ -89,7 +88,7 @@ data_plot.p_significance <- function(x, dataplot$y, function(df) { df$prop <- df$n / nrow(df) - return(df) + df } ) ) @@ -116,10 +115,10 @@ data_plot.p_significance <- function(x, dataplot <- .fix_facet_names(dataplot) attr(dataplot, "info") <- list( - "xlab" = "Possible parameter values", - "ylab" = ylab, - "legend_fill" = "Probability", - "title" = "Practical Significance" + xlab = "Possible parameter values", + ylab = ylab, + legend_fill = "Probability", + title = "Practical Significance" ) class(dataplot) <- c("data_plot", "see_p_significance", class(dataplot)) @@ -132,18 +131,35 @@ data_plot.p_significance <- function(x, .compute_densities_ps <- function(x, name = "Y", threshold = 0) { out <- .as.data.frame_density(stats::density(x)) - fifty_cents <- sum(out$y[out$x > threshold]) > (sum(out$y) / 2) + # sanity check + if (is.null(threshold)) { + threshold <- 0 + } + + # make sure we have a vector of length 2 + if (length(threshold) == 1) { + threshold <- c(-1 * threshold, threshold) + } + + # find out the probability mass larger or lower than the ROPE (outside) + p_mass_ht_rope <- sum(out$y[out$x > threshold[2]]) + p_mass_lt_rope <- sum(out$y[out$x < threshold[1]]) + + # find out whether probability mass "above" ROPE is larger than the probability + # mass that is on the left (negative) side of the ROPE + fifty_cents <- p_mass_ht_rope > p_mass_lt_rope out$fill <- "Less Probable" - out$fill[abs(out$x) < threshold] <- "ROPE" - out$fill[(out$x > threshold)] <- ifelse(fifty_cents, "Significant", "Less Probable") - out$fill[out$x < (-1 * threshold)] <- ifelse(fifty_cents, "Less Probable", "Significant") + out$fill[out$x > threshold[1] & out$x < threshold[2]] <- "ROPE" + out$fill[out$x > threshold[2]] <- ifelse(fifty_cents, "Significant", "Less Probable") + out$fill[out$x < threshold[1]] <- ifelse(fifty_cents, "Less Probable", "Significant") out$height <- out$y out$y <- name # normalize - out$height <- as.vector((out$height - min(out$height, na.rm = TRUE)) / diff(range(out$height, na.rm = TRUE), na.rm = TRUE)) + range_diff <- diff(range(out$height, na.rm = TRUE), na.rm = TRUE) + out$height <- as.vector((out$height - min(out$height, na.rm = TRUE)) / range_diff) out } @@ -194,7 +210,7 @@ plot.see_p_significance <- function(x, params <- unique(x$y) # get labels - labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns)) + axis_labels <- .clean_parameter_names(x$y, grid = !is.null(n_columns)) insight::check_if_installed("ggridges") @@ -235,7 +251,7 @@ plot.see_p_significance <- function(x, if (length(unique(x$y)) == 1L && is.numeric(x$y)) { p <- p + scale_y_continuous(breaks = NULL, labels = NULL) } else { - p <- p + scale_y_discrete(labels = labels) + p <- p + scale_y_discrete(labels = axis_labels) } diff --git a/R/plot.performance_simres.R b/R/plot.performance_simres.R index a9c5801d6..a8d96d010 100644 --- a/R/plot.performance_simres.R +++ b/R/plot.performance_simres.R @@ -45,6 +45,7 @@ plot.see_performance_simres <- function(x, ...) { # need DHARMa to be installed insight::check_if_installed("DHARMa") + qqplotr_installed <- insight::check_if_installed("qqplotr", quietly = TRUE) # extract data, if from check_residuals if (inherits(x, "see_check_residuals")) { @@ -56,12 +57,21 @@ plot.see_performance_simres <- function(x, res <- stats::residuals(x) dp <- list(min = 0, max = 1, lower.tail = TRUE, log.p = FALSE) dp_band <- list(min = 0, max = 1) - dfun <- "unif" + # "distribution" argument has different handling in qqplotr + if (qqplotr_installed) { + dfun <- "unif" + } else { + dfun <- stats::qunif + } } else if (identical(transform, stats::qnorm)) { res <- stats::residuals(x, quantileFunction = stats::qnorm) dp <- list(mean = 0, sd = 1) dp_band <- list(mean = 0, sd = 1) - dfun <- "norm" + if (qqplotr_installed) { + dfun <- "norm" + } else { + dfun <- stats::qnorm + } } else if (is.character(transform)) { insight::format_error("`transform` must be a function, not a string value.") } else { @@ -76,7 +86,7 @@ plot.see_performance_simres <- function(x, ) # when we have package qqplotr, we can add confidence bands - if (requireNamespace("qqplotr", quietly = TRUE)) { + if (qqplotr_installed) { qq_stuff <- list( qqplotr::stat_qq_band( distribution = dfun, diff --git a/R/utils.R b/R/utils.R index 87cbf49ac..c9bcbd3d1 100644 --- a/R/utils.R +++ b/R/utils.R @@ -42,6 +42,8 @@ # clean parameters names params <- gsub("(b_|bs_|bsp_|bcs_)(.*)", "\\2", params, perl = TRUE) + params <- gsub("^cond_(.*)", "\\1 (Conditional)", params, perl = TRUE) + params <- gsub("(.*)_cond$", "\\1 (Conditional)", params, perl = TRUE) params <- gsub("^zi_(.*)", "\\1 (Zero-Inflated)", params, perl = TRUE) params <- gsub("(.*)_zi$", "\\1 (Zero-Inflated)", params, perl = TRUE) params <- gsub("(.*)_disp$", "\\1 (Dispersion)", params, perl = TRUE) diff --git a/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ1.svg b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ1.svg new file mode 100644 index 000000000..d82f7eb17 --- /dev/null +++ b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ1.svg @@ -0,0 +1,71 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +educationhigh +educationmid +age +time + + + + + + + +0 +10 +20 +Possible parameter values +Parameters + +Effect direction + + + + +Negative +Positive +Probability of Direction + + diff --git a/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ2.svg b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ2.svg new file mode 100644 index 000000000..051edbc2f --- /dev/null +++ b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-frequ2.svg @@ -0,0 +1,70 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +educationhigh +educationmid +age +time + + + + + + + +0 +10 +20 +Possible parameter values +Parameters + +Effect direction + + + + +Negative +Positive +Probability of Direction + + diff --git a/tests/testthat/_snaps/plot.p_direction/plot-p-dir-glmmtmb.svg b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-glmmtmb.svg new file mode 100644 index 000000000..efe463ee9 --- /dev/null +++ b/tests/testthat/_snaps/plot.p_direction/plot-p-dir-glmmtmb.svg @@ -0,0 +1,71 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +minedno (Zero-Inflated) +cover (Conditional) +minedno (Conditional) + + + + + + + + + +-3 +-2 +-1 +0 +1 +2 +Possible parameter values +Parameters + +Effect direction + + + + +Negative +Positive +Probability of Direction + + diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ1.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ1.svg new file mode 100644 index 000000000..ebdf426d4 --- /dev/null +++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ1.svg @@ -0,0 +1,63 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +educationhigh +educationmid +age +time + + + + + + + +0 +10 +20 +Possible parameter values +Parameters +Practical Significance + + diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ2.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ2.svg new file mode 100644 index 000000000..87dd6b156 --- /dev/null +++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ2.svg @@ -0,0 +1,66 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +educationhigh +educationmid +age +time + + + + + + + +0 +10 +20 +Possible parameter values +Parameters +Practical Significance + + diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ3.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ3.svg new file mode 100644 index 000000000..5ef9d53da --- /dev/null +++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-frequ3.svg @@ -0,0 +1,66 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +educationhigh +educationmid +age +time + + + + + + + +0 +10 +20 +Possible parameter values +Parameters +Practical Significance + + diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-glmmtmb.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-glmmtmb.svg new file mode 100644 index 000000000..f444dd4cc --- /dev/null +++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-glmmtmb.svg @@ -0,0 +1,64 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +minedno (Zero-Inflated) +cover (Conditional) +minedno (Conditional) + + + + + + + + + +-3 +-2 +-1 +0 +1 +2 +Possible parameter values +Parameters +Practical Significance + + diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-simple-threshold.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-simple-threshold.svg new file mode 100644 index 000000000..dd97f5514 --- /dev/null +++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-simple-threshold.svg @@ -0,0 +1,52 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +-2 +0 +2 +4 +6 +Possible parameter values +Posterior +Practical Significance + + diff --git a/tests/testthat/_snaps/plot.p_significance/plot-p-sig-threshold-2.svg b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-threshold-2.svg new file mode 100644 index 000000000..7c93bef30 --- /dev/null +++ b/tests/testthat/_snaps/plot.p_significance/plot-p-sig-threshold-2.svg @@ -0,0 +1,52 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +-2 +0 +2 +4 +6 +Possible parameter values +Posterior +Practical Significance + + diff --git a/tests/testthat/test-plot.p_direction.R b/tests/testthat/test-plot.p_direction.R index 2fbcfa2b1..7baf39def 100644 --- a/tests/testthat/test-plot.p_direction.R +++ b/tests/testthat/test-plot.p_direction.R @@ -7,3 +7,41 @@ test_that("`plot.see_p_direction()` works", { expect_s3_class(plot(result), "gg") }) + +skip_on_cran() +skip_if_not_installed("bayestestR", minimum_version = "0.14.1") +skip_if_not_installed("parameters", minimum_version = "0.22.3") + +test_that("`plot.see_p_direction works {parameters}}", { + skip_if_not_installed("vdiffr") + data(qol_cancer, package = "parameters") + model <- lm(QoL ~ time + age + education, data = qol_cancer) + set.seed(123) + out <- parameters::p_direction(model) + vdiffr::expect_doppelganger( + title = "plot.p_dir_frequ1", + fig = plot(out) + ) + set.seed(123) + out <- parameters::p_direction(model, null = 2) + vdiffr::expect_doppelganger( + title = "plot.p_dir_frequ2", + fig = plot(out) + ) +}) + +test_that("plot p_direction, glmmTMB", { + skip_if_not_installed("glmmTMB") + data(Salamanders, package = "glmmTMB") + m1 <- glmmTMB::glmmTMB(count ~ mined + cover + (1 | site), + zi = ~mined, + family = poisson, + data = Salamanders + ) + set.seed(123) + out <- parameters::p_direction(m1) + vdiffr::expect_doppelganger( + title = "plot.p_dir_glmmTMB", + fig = plot(out) + ) +}) diff --git a/tests/testthat/test-plot.p_significance.R b/tests/testthat/test-plot.p_significance.R index e2bc1ec1b..fcf981658 100644 --- a/tests/testthat/test-plot.p_significance.R +++ b/tests/testthat/test-plot.p_significance.R @@ -7,3 +7,63 @@ test_that("`plot.see_p_significance()` works", { expect_s3_class(plot(result), "gg") }) + +skip_on_cran() +skip_if_not_installed("bayestestR", minimum_version = "0.14.1") +skip_if_not_installed("parameters", minimum_version = "0.22.3") + +test_that("`plot.see_p_significance works for two thresholds", { + skip_if_not_installed("vdiffr") + set.seed(123) + x <- rnorm(1000, 1, 1.2) + out <- bayestestR::p_significance(x) + vdiffr::expect_doppelganger( + title = "plot.p_sig_simple_threshold", + fig = plot(out) + ) + out <- bayestestR::p_significance(x, threshold = c(-0.2, 0.5)) + vdiffr::expect_doppelganger( + title = "plot.p_sig_threshold_2", + fig = plot(out) + ) +}) + +test_that("`plot.see_p_significance works {parameters}}", { + skip_if_not_installed("vdiffr") + data(qol_cancer, package = "parameters") + model <- lm(QoL ~ time + age + education, data = qol_cancer) + set.seed(123) + out <- parameters::p_significance(model) + vdiffr::expect_doppelganger( + title = "plot.p_sig_frequ1", + fig = plot(out) + ) + set.seed(123) + out <- parameters::p_significance(model, threshold = c(-0.5, 3.3)) + vdiffr::expect_doppelganger( + title = "plot.p_sig_frequ2", + fig = plot(out) + ) + set.seed(123) + out <- parameters::p_significance(model, threshold = c(-0.5, 5)) + vdiffr::expect_doppelganger( + title = "plot.p_sig_frequ3", + fig = plot(out) + ) +}) + +test_that("plot p_significance, glmmTMB", { + skip_if_not_installed("glmmTMB") + data(Salamanders, package = "glmmTMB") + m1 <- glmmTMB::glmmTMB(count ~ mined + cover + (1 | site), + zi = ~mined, + family = poisson, + data = Salamanders + ) + set.seed(123) + out <- parameters::p_significance(m1) + vdiffr::expect_doppelganger( + title = "plot.p_sig_glmmTMB", + fig = plot(out) + ) +})