-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathhelper.py
128 lines (103 loc) · 4.07 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# Copyright 2021 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Mapping
import yaml
import dimod
import numpy as np
import matplotlib.pyplot as plt
_golden_ratio = (1 + 5 ** 0.5) / 2
_folder_name = 'images'
def load_from_yml(filename):
"""Load an experiment configuration from a yaml file. For examples,
take a look at `data` folder
Args:
filename (str): The name of the data file (use full or relative path)
Returns:
tuple: The first value in the tuple is an iterable of cars in a
sequence. The second returned value is a mapping with ensemble and
number of black cars as keys and values, respectively.
"""
with open(filename, 'r') as file_handle:
data = next(iter(yaml.safe_load_all(file_handle)))
sequence = data['sequence']
k = data['counts']
return sequence, k
def save_sequence_to_yaml(sequence, mapping, filename):
"""Load an experiment configuration from a yaml file. For examples,
take a look at `data` folder
Args:
sequence (Iterable): The sequence of cars (iterable)
mapping (dict): The mapping of unique car ensembles to the number of
black colors
filename (str): The name of the data file (use full or relative path)
"""
if '.yml' not in filename:
filename += '.yml'
if isinstance(sequence, np.ndarray):
sequence = sequence.tolist()
if isinstance(next(iter(mapping)), (np.int32, np.int64)):
mapping = {int(key): value for key, value in mapping.items()}
data = {
'sequence': sequence,
'counts': mapping
}
with open(filename, 'w') as file_handle:
yaml.dump(data, file_handle)
print(f'Saved sequence data to {filename}')
def load_experiment_from_yml(filename):
"""Load an experiment configuration from a yaml file. For examples,
take a look at `benchmark_experiments` folder.
TODO: This function will later be used to load benchmarking experiments.
Args:
filename (str): The name of the experiment file (use full or
relative path)
Returns:
dict: The yaml file as a dictionary
"""
with open(filename, 'r') as file_handle:
data = next(iter(yaml.safe_load_all(file_handle)))
return data
def bars_plot(sampleset, show=False, save=True, name='image.png',
folder_name=None):
"""Create a bar image for a given binary string.
Args:
sampleset (dimod.SampleSet): `dimod.SampleSet` or a sample-like
show (bool): Whether to show the plot (default=False)
save (bool): Whether to save the plot (default=True)
name (str): A file name to save the plot (default='image.png')
folder_name (str): The folder to save images (default=None)
"""
if folder_name is None:
folder_name = _folder_name
if isinstance(sampleset, dimod.SampleSet):
sample = sampleset.first.sample
sample = [sample[v] for v in sampleset.variables]
elif isinstance(sampleset, Mapping):
sample = [v for key, v in sampleset.items()]
else:
sample = sampleset
width = int(len(sample) / _golden_ratio)
sample = 1 - np.array(sample)
plt.imshow(np.repeat(sample, width).reshape(-1, width).T, cmap='gray')
plt.yticks([])
if save:
if not os.path.exists(folder_name):
os.makedirs(folder_name)
filename = os.path.basename(name)
filename = os.path.join(folder_name, filename)
plt.savefig(filename)
print(f'Saved solution to {filename}')
if show:
plt.show()