-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhandler.py
49 lines (35 loc) · 1.52 KB
/
handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from typing import Dict, List, Any
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
class EndpointHandler:
def __init__(self, path=""):
# load model and processor from path
self.model = AutoModelForCausalLM.from_pretrained(path, load_in_4bit=True)
self.tokenizer = AutoTokenizer.from_pretrained(path)
with open(f"{path}/zero_shot_cot_prompt.txt", 'r') as file:
self.instruction_prompt = file.read()
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
sentence = data.pop("inputs",data)
inputs = self.tokenizer(
[
alpaca_prompt.format(
self.instruction_prompt, # instruction
sentence, # input
"", # output - leave this blank for generation!
)
], return_tensors="pt")
outputs = self.model.generate(**inputs,
max_new_tokens=1048,
use_cache=True,
top_p=0.1,
temperature=0.001)
outputs = self.tokenizer.batch_decode(outputs)[0]
response = outputs.split("### Response:")[1].split("<|end_of_text|>")[0]
return [{"generated_text": response}]