-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathMFEARR.m
199 lines (190 loc) · 7.62 KB
/
MFEARR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
function dataMFEARR = MFEARR(tasks,pop,nGen,selectionProcess,rmp,pIL,nRepeat,idxTask,dq,Emin,initPop)
%MFEARR function: implementation of ¡°Parting Ways and Reallocating Resources
%in Evolutionary Multitasking¡±
% Xianfeng Tan, 05/29/2018, [email protected]
tic
dataDisp=cell(1,3);
dataDisp{1}=idxTask; dataDisp{2}='MFEARR';
nTasks=length(tasks);
if nTasks <= 1
error('At least 2 tasks required for MFEA');
end
while mod(pop,nTasks) ~= 0
pop = pop + 1;
end
D=zeros(1,nTasks);
for i=1:nTasks
D(i)=tasks(i).dims;
end
D_multitask=max(D);
options = optimoptions(@fminunc,'Display','off','Algorithm','quasi-newton','MaxIter',2); % settings for individual learning
fncevalCalls = zeros(1,nRepeat);
callsPerIndividual=zeros(1,pop);
evBestFitness = zeros(nTasks*nRepeat,nGen); % best fitness found
TotalEvaluations=zeros(nRepeat,nGen); % total number of task evaluations so fer
bestobj=Inf(1,nTasks);
for rep = 1:nRepeat
dataDisp{3}=rep;
dq.send(dataDisp);
for i = 1 : pop
population(i) = Chromosome();
population(i) = initialize(population(i),D_multitask);
population(i).skill_factor=0;
end
for n=1:nTasks
if nargin>=11
for i=1:pop/nTasks
population((n-1)*pop/nTasks+i).rnvec(1:D(n))=initPop{n,rep}(i,1:D(n));
end
else
initPop{n,rep}=reshape([population((n-1)*pop/nTasks+(1:pop/nTasks)).rnvec],D_multitask,pop/nTasks)';
end
end
for i = 1 : pop
[population(i),callsPerIndividual(i)] = evaluate(population(i),tasks,pIL,nTasks,options);
end
fncevalCalls(rep)=fncevalCalls(rep) + sum(callsPerIndividual);
TotalEvaluations(rep,1)=fncevalCalls(rep);
factorial_cost=zeros(1,pop);
for i = 1:nTasks
for j = 1:pop
factorial_cost(j)=population(j).factorial_costs(i);
end
[xxx,y]=sort(factorial_cost);
population=population(y);
for j=1:pop
population(j).factorial_ranks(i)=j;
end
bestobj(i)=population(1).factorial_costs(i);
evBestFitness(i+2*(rep-1),1)=bestobj(i);
bestIndData(rep,i)=population(1);
end
for i=1:pop
[xxx,yyy]=min(population(i).factorial_ranks);
x=find(population(i).factorial_ranks == xxx);
equivalent_skills=length(x);
if equivalent_skills>1
population(i).skill_factor=x(randi(equivalent_skills,1));
tmp=population(i).factorial_costs(population(i).skill_factor);
population(i).factorial_costs(1:nTasks)=inf;
population(i).factorial_costs(population(i).skill_factor)=tmp;
else
population(i).skill_factor=yyy;
tmp=population(i).factorial_costs(population(i).skill_factor);
population(i).factorial_costs(1:nTasks)=inf;
population(i).factorial_costs(population(i).skill_factor)=tmp;
end
end
mu = 2; % Index of Simulated Binary Crossover (tunable)
mum = 5; % Index of polynomial mutation
generation=1;
ASRD=0; % Accumulated survival rate of divergents
while generation < nGen
generation = generation + 1;
id_divergents=[];
count=1;
for i = 1 : pop/2
p1 = randi(pop,1);
child(count)=Chromosome();
child(count+1)=Chromosome();
if rand(1)<rmp % crossover
x=find([population.skill_factor] ~= population(p1).skill_factor);
diff_skills=length(x);
p2 = x(randi(diff_skills,1));
id_divergents=[ id_divergents count count+1 ];
else
x=find([population.skill_factor] == population(p1).skill_factor);
same_skills=length(x);
p2 = x(randi(same_skills,1));
end
u = rand(1,D_multitask);
cf = zeros(1,D_multitask);
cf(u<=0.5)=(2*u(u<=0.5)).^(1/(mu+1));
cf(u>0.5)=(2*(1-u(u>0.5))).^(-1/(mu+1));
child(count) = crossover(child(count),population(p1),population(p2),cf);
child(count+1) = crossover(child(count+1),population(p2),population(p1),cf);
if rand(1) < 1
child(count)=mutate(child(count),child(count),D_multitask,mum);
child(count+1)=mutate(child(count+1),child(count+1),D_multitask,mum);
end
%Vertical cultural transmission
sf1=1+round(rand(1));
sf2=1+round(rand(1));
if sf1 == 1 % skill factor selection
child(count).skill_factor=population(p1).skill_factor;
else
child(count).skill_factor=population(p2).skill_factor;
end
if sf2 == 1
child(count+1).skill_factor=population(p1).skill_factor;
else
child(count+1).skill_factor=population(p2).skill_factor;
end
count=count+2;
end
for i = 1 : pop
[child(i),callsPerIndividual(i)] = evaluate(child(i),tasks,pIL,nTasks,options);
end
fncevalCalls(rep)=fncevalCalls(rep) + sum(callsPerIndividual);
TotalEvaluations(rep,generation)=fncevalCalls(rep);
intpopulation(1:pop)=population;
intpopulation(pop+1:2*pop)=child;
factorial_cost=zeros(1,2*pop);
for i = 1:nTasks
for j = 1:2*pop
factorial_cost(j)=intpopulation(j).factorial_costs(i);
end
[xxx,y]=sort(factorial_cost);
intpopulation=intpopulation(y);
for j=1:2*pop
intpopulation(j).factorial_ranks(i)=j;
end
if intpopulation(1).factorial_costs(i)<=bestobj(i)
bestobj(i)=intpopulation(1).factorial_costs(i);
bestIndData(rep,i)=intpopulation(1);
end
evBestFitness(i+2*(rep-1),generation)=bestobj(i);
end
for i=1:2*pop
[xxx,yyy]=min(intpopulation(i).factorial_ranks);
intpopulation(i).skill_factor=yyy;
intpopulation(i).scalar_fitness=1/xxx;
end
if strcmp(selectionProcess,'elitist')
[xxx,y]=sort(-[intpopulation.scalar_fitness]);
intpopulation=intpopulation(y);
population=intpopulation(1:pop);
elseif strcmp(selectionProcess,'roulette wheel')
for i=1:nTasks
skillGroup(i).individuals=intpopulation([intpopulation.skill_factor]==i);
end
count=0;
while count<pop
count=count+1;
skill=mod(count,nTasks)+1;
population(count)=skillGroup(skill).individuals(RouletteWheelSelection([skillGroup(skill).individuals.scalar_fitness]));
end
end
% Reallocate resources
if rmp>0
nDivergents=length(id_divergents);
rnvec=reshape([population.rnvec],D_multitask,pop)';
[~,ia]=intersect(rnvec,reshape([child(id_divergents).rnvec],D_multitask,nDivergents)','rows');
surv_nDivergents=length(ia);
lamda=surv_nDivergents/nDivergents;
ASRD=ASRD+lamda;
if mod(generation,(nGen/10))==0
if ASRD<Emin
rmp=0;
end
ASRD=0;
end
end
end
end
dataMFEARR.wallClockTime=toc;
dataMFEARR.bestFitness=evBestFitness;
dataMFEARR.bestIndData=bestIndData;
dataMFEARR.totalEvals=TotalEvaluations;
dataMFEARR.initPop=initPop;
end