Skip to content

Latest commit

 

History

History

14_CuttingRope

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

题目描述

给你一根长度为 n 绳子,请把绳子剪成 m 段(m、n 都是整数,n>1 并且 m≥1)。

每段的绳子的长度记为 k[0]、k[1]、……、k[m]k[0]k[1] … k[m]可能的最大乘积是多少?

例如当绳子的长度是 8 时,我们把它剪成长度分别为 2、3、3 的三段,此时得到最大的乘积 18。

样例

输入:8

输出:18

解法

解法一:动态规划法

时间复杂度O(n²),空间复杂度O(n)

f(n) = max(f(i) * f(n - i)), i = 1,2..n-1
  • 长度为 2,只可能剪成长度为 1 的两段,因此 f(2)=1
  • 长度为 3,剪成长度分别为 1 和 2 的两段,乘积比较大,因此 f(3) = 2
  • 长度为 n,在剪第一刀的时候,有 n-1 种可能的选择,剪出来的绳子又可以继续剪,可以看出,原问题可以划分为子问题,子问题又有重复子问题。
/**
 * @author bingo
 * @since 2018/12/17
 */

class Solution {

    /**
     * 剪绳子求最大乘积
     *
     * @param length 绳子长度
     * @return 乘积最大值
     */
    public int maxProductAfterCutting(int length) {
        if (length < 4) {
            return length - 1;
        }

        int[] res = new int[length + 1];
        res[1] = 1;
        res[2] = 2;
        res[3] = 3;
        for (int i = 4; i <= length; ++i) {
            for (int j = 1; j < i / 2 + 1; ++j) {
                res[i] = Math.max(res[i], res[j] * res[i - j]);
            }
        }
        return res[length];
    }
}

贪心算法

时间复杂度O(1),空间复杂度O(1)

贪心策略:

  • 当 n>=5 时,尽可能多地剪长度为 3 的绳子
  • 当剩下的绳子长度为 4 时,就把绳子剪成两段长度为 2 的绳子。

证明:

  • 当 n>=5 时,可以证明 2(n-2)>n,并且 3(n-3)>n。也就是说,当绳子剩下长度大于或者等于 5 的时候,可以把它剪成长度为 3 或者 2 的绳子段。
  • 当 n>=5 时,3(n-3)>=2(n-2),因此,应该尽可能多地剪长度为 3 的绳子段。
  • 当 n=4 时,剪成两根长度为 2 的绳子,其实没必要剪,只是题目的要求是至少要剪一刀。
/**
 * @author bingo
 * @since 2018/12/17
 */

class Solution {

    /**
     * 剪绳子求最大乘积
     *
     * @param length 绳子长度
     * @return 乘积最大值
     */
    public int maxProductAfterCutting(int length) {
        if (length < 4) {
            return length - 1;
        }

        int timesOf3 = length / 3;
        if (length % 3 == 1) {
            --timesOf3;
        }
        int timesOf2 = (length - timesOf3 * 3) >> 1;
        return (int) (Math.pow(2, timesOf2) * Math.pow(3, timesOf3));
    }
}

测试用例

  1. 功能测试(绳子的初始长度大于 5);
  2. 边界值测试(绳子的初始长度分别为 0、1、2、3、4)。

题目导航

  1. 返回上一题
  2. 进入下一题
  3. 回到题目列表