一只青蛙一次可以跳上1
级台阶,也可以跳上2
级……它也可以跳上n
级。求该青蛙跳上一个n
级的台阶总共有多少种跳法。
跳上 n-1
级台阶,可以从 n-2
级跳 1
级上去,也可以从 n-3
级跳 2
级上去...那么
f(n-1) = f(n-2) + f(n-3) + ... + f(0)
跳上 n
级台阶,可以从 n-1
级跳 1
级上去,也可以从 n-2
级跳 2
级上去...那么
f(n) = f(n-1) + f(n-2) + ... + f(0)
综上可得
f(n) - f(n-1) = f(n-1)
即
f(n) = 2*f(n-1)
所以 f(n) 是一个等比数列
/**
* @author bingo
* @since 2018/12/16
*/
class Solution {
/**
* 青蛙跳台阶II
*
* @param target 跳上的那一级台阶
* @return 多少种跳法
*/
public int JumpFloorII(int target) {
return (int) Math.pow(2, target - 1);
}
}
注意,这一解法已同步贡献给开源仓库 CS-Notes。
每当计算 res[i],把前面所有结果累加起来。
/**
* @author bingo
* @since 2018/12/16
*/
class Solution {
/**
* 青蛙跳台阶II
*
* @param target 跳上的那一级台阶
* @return 多少种跳法
*/
public int JumpFloorII(int target) {
if (target < 3) {
return target;
}
int[] res = new int[target + 1];
Arrays.fill(res, 1);
for (int i = 2; i <= target; ++i) {
for (int j = 1; j < i; ++j) {
res[i] += res[j];
}
}
return res[target];
}
}
- 功能测试(如输入 3、5、10 等);
- 边界值测试(如输入 0、1、2);
- 性能测试(输入较大的数字,如 40、50、100 等)。