forked from pikiwidb/rediscache
-
Notifications
You must be signed in to change notification settings - Fork 1
/
dict.c
1600 lines (1414 loc) · 55.6 KB
/
dict.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Hash Tables Implementation.
*
* This file implements in memory hash tables with insert/del/replace/find/
* get-random-element operations. Hash tables will auto resize if needed
* tables of power of two in size are used, collisions are handled by
* chaining. See the source code for more information... :)
*
* Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "fmacros.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdarg.h>
#include <limits.h>
#include <sys/time.h>
#include <assert.h>
#include "dict.h"
#include "zmalloc.h"
#include "sds.h"
#include "object.h"
#include "util.h"
/* Using dictEnableResize() / dictDisableResize() we make possible to disable
* resizing and rehashing of the hash table as needed. This is very important
* for Redis, as we use copy-on-write and don't want to move too much memory
* around when there is a child performing saving operations.
*
* Note that even when dict_can_resize is set to DICT_RESIZE_AVOID, not all
* resizes are prevented: a hash table is still allowed to grow if the ratio
* between the number of elements and the buckets > dict_force_resize_ratio. */
static dictResizeEnable dict_can_resize = DICT_RESIZE_ENABLE;
static unsigned int dict_force_resize_ratio = 5;
/* -------------------------- types ----------------------------------------- */
struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
struct dictEntry *next; /* Next entry in the same hash bucket. */
void *metadata[]; /* An arbitrary number of bytes (starting at a
* pointer-aligned address) of size as returned
* by dictType's dictEntryMetadataBytes(). */
};
typedef struct {
void *key;
dictEntry *next;
} dictEntryNoValue;
/* -------------------------- private prototypes ---------------------------- */
static int _dictExpandIfNeeded(dict *d);
static signed char _dictNextExp(unsigned long size);
static int _dictInit(dict *d, dictType *type);
static dictEntry *dictGetNext(const dictEntry *de);
static dictEntry **dictGetNextRef(dictEntry *de);
static void dictSetNext(dictEntry *de, dictEntry *next);
/* -------------------------- hash functions -------------------------------- */
static uint8_t dict_hash_function_seed[16];
void dictSetHashFunctionSeed(uint8_t *seed) {
memcpy(dict_hash_function_seed,seed,sizeof(dict_hash_function_seed));
}
uint8_t *dictGetHashFunctionSeed(void) {
return dict_hash_function_seed;
}
/* The default hashing function uses SipHash implementation
* in siphash.c. */
uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);
uint64_t dictGenHashFunction(const void *key, size_t len) {
return siphash(key,len,dict_hash_function_seed);
}
uint64_t dictGenCaseHashFunction(const unsigned char *buf, size_t len) {
return siphash_nocase(buf,len,dict_hash_function_seed);
}
/* --------------------- dictEntry pointer bit tricks ---------------------- */
/* The 3 least significant bits in a pointer to a dictEntry determines what the
* pointer actually points to. If the least bit is set, it's a key. Otherwise,
* the bit pattern of the least 3 significant bits mark the kind of entry. */
#define ENTRY_PTR_MASK 7 /* 111 */
#define ENTRY_PTR_NORMAL 0 /* 000 */
#define ENTRY_PTR_NO_VALUE 2 /* 010 */
/* Returns 1 if the entry pointer is a pointer to a key, rather than to an
* allocated entry. Returns 0 otherwise. */
static inline int entryIsKey(const dictEntry *de) {
return (uintptr_t)(void *)de & 1;
}
/* Returns 1 if the pointer is actually a pointer to a dictEntry struct. Returns
* 0 otherwise. */
static inline int entryIsNormal(const dictEntry *de) {
return ((uintptr_t)(void *)de & ENTRY_PTR_MASK) == ENTRY_PTR_NORMAL;
}
/* Returns 1 if the entry is a special entry with key and next, but without
* value. Returns 0 otherwise. */
static inline int entryIsNoValue(const dictEntry *de) {
return ((uintptr_t)(void *)de & ENTRY_PTR_MASK) == ENTRY_PTR_NO_VALUE;
}
/* Creates an entry without a value field. */
static inline dictEntry *createEntryNoValue(void *key, dictEntry *next) {
dictEntryNoValue *entry = zmalloc(sizeof(*entry));
entry->key = key;
entry->next = next;
return (dictEntry *)(void *)((uintptr_t)(void *)entry | ENTRY_PTR_NO_VALUE);
}
static inline dictEntry *encodeMaskedPtr(const void *ptr, unsigned int bits) {
assert(((uintptr_t)ptr & ENTRY_PTR_MASK) == 0);
return (dictEntry *)(void *)((uintptr_t)ptr | bits);
}
static inline void *decodeMaskedPtr(const dictEntry *de) {
assert(!entryIsKey(de));
return (void *)((uintptr_t)(void *)de & ~ENTRY_PTR_MASK);
}
/* Decodes the pointer to an entry without value, when you know it is an entry
* without value. Hint: Use entryIsNoValue to check. */
static inline dictEntryNoValue *decodeEntryNoValue(const dictEntry *de) {
return decodeMaskedPtr(de);
}
/* Returns 1 if the entry has a value field and 0 otherwise. */
static inline int entryHasValue(const dictEntry *de) {
return entryIsNormal(de);
}
/* ----------------------------- API implementation ------------------------- */
/* Reset hash table parameters already initialized with _dictInit()*/
static void _dictReset(dict *d, int htidx)
{
d->ht_table[htidx] = NULL;
d->ht_size_exp[htidx] = -1;
d->ht_used[htidx] = 0;
}
/* Create a new hash table */
dict *dictCreate(dictType *type)
{
size_t metasize = type->dictMetadataBytes ? type->dictMetadataBytes() : 0;
dict *d = zmalloc(sizeof(*d) + metasize);
if (metasize) {
memset(dictMetadata(d), 0, metasize);
}
_dictInit(d,type);
return d;
}
/* Initialize the hash table */
int _dictInit(dict *d, dictType *type)
{
_dictReset(d, 0);
_dictReset(d, 1);
d->type = type;
d->rehashidx = -1;
d->pauserehash = 0;
return DICT_OK;
}
/* Resize the table to the minimal size that contains all the elements,
* but with the invariant of a USED/BUCKETS ratio near to <= 1 */
int dictResize(dict *d)
{
unsigned long minimal;
if (dict_can_resize != DICT_RESIZE_ENABLE || dictIsRehashing(d)) return DICT_ERR;
minimal = d->ht_used[0];
if (minimal < DICT_HT_INITIAL_SIZE)
minimal = DICT_HT_INITIAL_SIZE;
return dictExpand(d, minimal);
}
/* Expand or create the hash table,
* when malloc_failed is non-NULL, it'll avoid panic if malloc fails (in which case it'll be set to 1).
* Returns DICT_OK if expand was performed, and DICT_ERR if skipped. */
int _dictExpand(dict *d, unsigned long size, int* malloc_failed)
{
if (malloc_failed) *malloc_failed = 0;
/* the size is invalid if it is smaller than the number of
* elements already inside the hash table */
if (dictIsRehashing(d) || d->ht_used[0] > size)
return DICT_ERR;
/* the new hash table */
dictEntry **new_ht_table;
unsigned long new_ht_used;
signed char new_ht_size_exp = _dictNextExp(size);
/* Detect overflows */
size_t newsize = 1ul<<new_ht_size_exp;
if (newsize < size || newsize * sizeof(dictEntry*) < newsize)
return DICT_ERR;
/* Rehashing to the same table size is not useful. */
if (new_ht_size_exp == d->ht_size_exp[0]) return DICT_ERR;
/* Allocate the new hash table and initialize all pointers to NULL */
if (malloc_failed) {
new_ht_table = ztrycalloc(newsize*sizeof(dictEntry*));
*malloc_failed = new_ht_table == NULL;
if (*malloc_failed)
return DICT_ERR;
} else
new_ht_table = zcallocate(newsize*sizeof(dictEntry*));
new_ht_used = 0;
/* Is this the first initialization? If so it's not really a rehashing
* we just set the first hash table so that it can accept keys. */
if (d->ht_table[0] == NULL) {
d->ht_size_exp[0] = new_ht_size_exp;
d->ht_used[0] = new_ht_used;
d->ht_table[0] = new_ht_table;
return DICT_OK;
}
/* Prepare a second hash table for incremental rehashing */
d->ht_size_exp[1] = new_ht_size_exp;
d->ht_used[1] = new_ht_used;
d->ht_table[1] = new_ht_table;
d->rehashidx = 0;
return DICT_OK;
}
/* return DICT_ERR if expand was not performed */
int dictExpand(dict *d, unsigned long size) {
return _dictExpand(d, size, NULL);
}
/* return DICT_ERR if expand failed due to memory allocation failure */
int dictTryExpand(dict *d, unsigned long size) {
int malloc_failed;
_dictExpand(d, size, &malloc_failed);
return malloc_failed? DICT_ERR : DICT_OK;
}
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*
* Note that a rehashing step consists in moving a bucket (that may have more
* than one key as we use chaining) from the old to the new hash table, however
* since part of the hash table may be composed of empty spaces, it is not
* guaranteed that this function will rehash even a single bucket, since it
* will visit at max N*10 empty buckets in total, otherwise the amount of
* work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
int empty_visits = n*10; /* Max number of empty buckets to visit. */
unsigned long s0 = DICTHT_SIZE(d->ht_size_exp[0]);
unsigned long s1 = DICTHT_SIZE(d->ht_size_exp[1]);
if (dict_can_resize == DICT_RESIZE_FORBID || !dictIsRehashing(d)) return 0;
if (dict_can_resize == DICT_RESIZE_AVOID &&
((s1 > s0 && s1 / s0 < dict_force_resize_ratio) ||
(s1 < s0 && s0 / s1 < dict_force_resize_ratio)))
{
return 0;
}
while(n-- && d->ht_used[0] != 0) {
dictEntry *de, *nextde;
/* Note that rehashidx can't overflow as we are sure there are more
* elements because ht[0].used != 0 */
assert(DICTHT_SIZE(d->ht_size_exp[0]) > (unsigned long)d->rehashidx);
while(d->ht_table[0][d->rehashidx] == NULL) {
d->rehashidx++;
if (--empty_visits == 0) return 1;
}
de = d->ht_table[0][d->rehashidx];
/* Move all the keys in this bucket from the old to the new hash HT */
while(de) {
uint64_t h;
nextde = dictGetNext(de);
void *key = dictGetKey(de);
/* Get the index in the new hash table */
if (d->ht_size_exp[1] > d->ht_size_exp[0]) {
h = dictHashKey(d, key) & DICTHT_SIZE_MASK(d->ht_size_exp[1]);
} else {
/* We're shrinking the table. The tables sizes are powers of
* two, so we simply mask the bucket index in the larger table
* to get the bucket index in the smaller table. */
h = d->rehashidx & DICTHT_SIZE_MASK(d->ht_size_exp[1]);
}
if (d->type->no_value) {
if (d->type->keys_are_odd && !d->ht_table[1][h]) {
/* Destination bucket is empty and we can store the key
* directly without an allocated entry. Free the old entry
* if it's an allocated entry.
*
* TODO: Add a flag 'keys_are_even' and if set, we can use
* this optimization for these dicts too. We can set the LSB
* bit when stored as a dict entry and clear it again when
* we need the key back. */
assert(entryIsKey(key));
if (!entryIsKey(de)) zfree(decodeMaskedPtr(de));
de = key;
} else if (entryIsKey(de)) {
/* We don't have an allocated entry but we need one. */
de = createEntryNoValue(key, d->ht_table[1][h]);
} else {
/* Just move the existing entry to the destination table and
* update the 'next' field. */
assert(entryIsNoValue(de));
dictSetNext(de, d->ht_table[1][h]);
}
} else {
dictSetNext(de, d->ht_table[1][h]);
}
d->ht_table[1][h] = de;
d->ht_used[0]--;
d->ht_used[1]++;
de = nextde;
}
d->ht_table[0][d->rehashidx] = NULL;
d->rehashidx++;
}
/* Check if we already rehashed the whole table... */
if (d->ht_used[0] == 0) {
zfree(d->ht_table[0]);
/* Copy the new ht onto the old one */
d->ht_table[0] = d->ht_table[1];
d->ht_used[0] = d->ht_used[1];
d->ht_size_exp[0] = d->ht_size_exp[1];
_dictReset(d, 1);
d->rehashidx = -1;
return 0;
}
/* More to rehash... */
return 1;
}
long long timeInMilliseconds(void) {
struct timeval tv;
gettimeofday(&tv,NULL);
return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}
/* Rehash in ms+"delta" milliseconds. The value of "delta" is larger
* than 0, and is smaller than 1 in most cases. The exact upper bound
* depends on the running time of dictRehash(d,100).*/
int dictRehashMilliseconds(dict *d, int ms) {
if (d->pauserehash > 0) return 0;
long long start = timeInMilliseconds();
int rehashes = 0;
while(dictRehash(d,100)) {
rehashes += 100;
if (timeInMilliseconds()-start > ms) break;
}
return rehashes;
}
/* This function performs just a step of rehashing, and only if hashing has
* not been paused for our hash table. When we have iterators in the
* middle of a rehashing we can't mess with the two hash tables otherwise
* some elements can be missed or duplicated.
*
* This function is called by common lookup or update operations in the
* dictionary so that the hash table automatically migrates from H1 to H2
* while it is actively used. */
static void _dictRehashStep(dict *d) {
if (d->pauserehash == 0) dictRehash(d,1);
}
/* Return a pointer to the metadata section within the dict. */
void *dictMetadata(dict *d) {
return &d->metadata;
}
/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
dictEntry *entry = dictAddRaw(d,key,NULL);
if (!entry) return DICT_ERR;
if (!d->type->no_value) dictSetVal(d, entry, val);
return DICT_OK;
}
/* Low level add or find:
* This function adds the entry but instead of setting a value returns the
* dictEntry structure to the user, that will make sure to fill the value
* field as they wish.
*
* This function is also directly exposed to the user API to be called
* mainly in order to store non-pointers inside the hash value, example:
*
* entry = dictAddRaw(dict,mykey,NULL);
* if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
*
* Return values:
*
* If key already exists NULL is returned, and "*existing" is populated
* with the existing entry if existing is not NULL.
*
* If key was added, the hash entry is returned to be manipulated by the caller.
*/
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{
/* Get the position for the new key or NULL if the key already exists. */
void *position = dictFindPositionForInsert(d, key, existing);
if (!position) return NULL;
/* Dup the key if necessary. */
if (d->type->keyDup) key = d->type->keyDup(d, key);
return dictInsertAtPosition(d, key, position);
}
/* Adds a key in the dict's hashtable at the position returned by a preceding
* call to dictFindPositionForInsert. This is a low level function which allows
* splitting dictAddRaw in two parts. Normally, dictAddRaw or dictAdd should be
* used instead. */
dictEntry *dictInsertAtPosition(dict *d, void *key, void *position) {
dictEntry **bucket = position; /* It's a bucket, but the API hides that. */
dictEntry *entry;
/* If rehashing is ongoing, we insert in table 1, otherwise in table 0.
* Assert that the provided bucket is the right table. */
int htidx = dictIsRehashing(d) ? 1 : 0;
assert(bucket >= &d->ht_table[htidx][0] &&
bucket <= &d->ht_table[htidx][DICTHT_SIZE_MASK(d->ht_size_exp[htidx])]);
size_t metasize = dictEntryMetadataSize(d);
if (d->type->no_value) {
assert(!metasize); /* Entry metadata + no value not supported. */
if (d->type->keys_are_odd && !*bucket) {
/* We can store the key directly in the destination bucket without the
* allocated entry.
*
* TODO: Add a flag 'keys_are_even' and if set, we can use this
* optimization for these dicts too. We can set the LSB bit when
* stored as a dict entry and clear it again when we need the key
* back. */
entry = key;
assert(entryIsKey(entry));
} else {
/* Allocate an entry without value. */
entry = createEntryNoValue(key, *bucket);
}
} else {
/* Allocate the memory and store the new entry.
* Insert the element in top, with the assumption that in a database
* system it is more likely that recently added entries are accessed
* more frequently. */
entry = zmalloc(sizeof(*entry) + metasize);
assert(entryIsNormal(entry)); /* Check alignment of allocation */
if (metasize > 0) {
memset(dictEntryMetadata(entry), 0, metasize);
}
entry->key = key;
entry->next = *bucket;
}
*bucket = entry;
d->ht_used[htidx]++;
return entry;
}
/* Add or Overwrite:
* Add an element, discarding the old value if the key already exists.
* Return 1 if the key was added from scratch, 0 if there was already an
* element with such key and dictReplace() just performed a value update
* operation. */
int dictReplace(dict *d, void *key, void *val)
{
dictEntry *entry, *existing;
/* Try to add the element. If the key
* does not exists dictAdd will succeed. */
entry = dictAddRaw(d,key,&existing);
if (entry) {
dictSetVal(d, entry, val);
return 1;
}
/* Set the new value and free the old one. Note that it is important
* to do that in this order, as the value may just be exactly the same
* as the previous one. In this context, think to reference counting,
* you want to increment (set), and then decrement (free), and not the
* reverse. */
void *oldval = dictGetVal(existing);
dictSetVal(d, existing, val);
if (d->type->valDestructor)
d->type->valDestructor(d, oldval);
return 0;
}
/* Add or Find:
* dictAddOrFind() is simply a version of dictAddRaw() that always
* returns the hash entry of the specified key, even if the key already
* exists and can't be added (in that case the entry of the already
* existing key is returned.)
*
* See dictAddRaw() for more information. */
dictEntry *dictAddOrFind(dict *d, void *key) {
dictEntry *entry, *existing;
entry = dictAddRaw(d,key,&existing);
return entry ? entry : existing;
}
/* Search and remove an element. This is a helper function for
* dictDelete() and dictUnlink(), please check the top comment
* of those functions. */
static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
uint64_t h, idx;
dictEntry *he, *prevHe;
int table;
/* dict is empty */
if (dictSize(d) == 0) return NULL;
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
he = d->ht_table[table][idx];
prevHe = NULL;
while(he) {
void *he_key = dictGetKey(he);
if (key == he_key || dictCompareKeys(d, key, he_key)) {
/* Unlink the element from the list */
if (prevHe)
dictSetNext(prevHe, dictGetNext(he));
else
d->ht_table[table][idx] = dictGetNext(he);
if (!nofree) {
dictFreeUnlinkedEntry(d, he);
}
d->ht_used[table]--;
return he;
}
prevHe = he;
he = dictGetNext(he);
}
if (!dictIsRehashing(d)) break;
}
return NULL; /* not found */
}
/* Remove an element, returning DICT_OK on success or DICT_ERR if the
* element was not found. */
int dictDelete(dict *ht, const void *key) {
return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
}
/* Remove an element from the table, but without actually releasing
* the key, value and dictionary entry. The dictionary entry is returned
* if the element was found (and unlinked from the table), and the user
* should later call `dictFreeUnlinkedEntry()` with it in order to release it.
* Otherwise if the key is not found, NULL is returned.
*
* This function is useful when we want to remove something from the hash
* table but want to use its value before actually deleting the entry.
* Without this function the pattern would require two lookups:
*
* entry = dictFind(...);
* // Do something with entry
* dictDelete(dictionary,entry);
*
* Thanks to this function it is possible to avoid this, and use
* instead:
*
* entry = dictUnlink(dictionary,entry);
* // Do something with entry
* dictFreeUnlinkedEntry(entry); // <- This does not need to lookup again.
*/
dictEntry *dictUnlink(dict *d, const void *key) {
return dictGenericDelete(d,key,1);
}
/* You need to call this function to really free the entry after a call
* to dictUnlink(). It's safe to call this function with 'he' = NULL. */
void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {
if (he == NULL) return;
dictFreeKey(d, he);
dictFreeVal(d, he);
if (!entryIsKey(he)) zfree(decodeMaskedPtr(he));
}
/* Destroy an entire dictionary */
int _dictClear(dict *d, int htidx, void(callback)(dict*)) {
unsigned long i;
/* Free all the elements */
for (i = 0; i < DICTHT_SIZE(d->ht_size_exp[htidx]) && d->ht_used[htidx] > 0; i++) {
dictEntry *he, *nextHe;
if (callback && (i & 65535) == 0) callback(d);
if ((he = d->ht_table[htidx][i]) == NULL) continue;
while(he) {
nextHe = dictGetNext(he);
dictFreeKey(d, he);
dictFreeVal(d, he);
if (!entryIsKey(he)) zfree(decodeMaskedPtr(he));
d->ht_used[htidx]--;
he = nextHe;
}
}
/* Free the table and the allocated cache structure */
zfree(d->ht_table[htidx]);
/* Re-initialize the table */
_dictReset(d, htidx);
return DICT_OK; /* never fails */
}
/* Clear & Release the hash table */
void dictRelease(dict *d)
{
_dictClear(d,0,NULL);
_dictClear(d,1,NULL);
zfree(d);
}
dictEntry *dictFind(dict *d, const void *key)
{
dictEntry *he;
uint64_t h, idx, table;
if (dictSize(d) == 0) return NULL; /* dict is empty */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
he = d->ht_table[table][idx];
while(he) {
void *he_key = dictGetKey(he);
if (key == he_key || dictCompareKeys(d, key, he_key))
return he;
he = dictGetNext(he);
}
if (!dictIsRehashing(d)) return NULL;
}
return NULL;
}
void *dictFetchValue(dict *d, const void *key) {
dictEntry *he;
he = dictFind(d,key);
return he ? dictGetVal(he) : NULL;
}
/* Find an element from the table, also get the plink of the entry. The entry
* is returned if the element is found, and the user should later call
* `dictTwoPhaseUnlinkFree` with it in order to unlink and release it. Otherwise if
* the key is not found, NULL is returned. These two functions should be used in pair.
* `dictTwoPhaseUnlinkFind` pauses rehash and `dictTwoPhaseUnlinkFree` resumes rehash.
*
* We can use like this:
*
* dictEntry *de = dictTwoPhaseUnlinkFind(db->dict,key->ptr,&plink, &table);
* // Do something, but we can't modify the dict
* dictTwoPhaseUnlinkFree(db->dict,de,plink,table); // We don't need to lookup again
*
* If we want to find an entry before delete this entry, this an optimization to avoid
* dictFind followed by dictDelete. i.e. the first API is a find, and it gives some info
* to the second one to avoid repeating the lookup
*/
dictEntry *dictTwoPhaseUnlinkFind(dict *d, const void *key, dictEntry ***plink, int *table_index) {
uint64_t h, idx, table;
if (dictSize(d) == 0) return NULL; /* dict is empty */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & DICTHT_SIZE_MASK(d->ht_size_exp[table]);
dictEntry **ref = &d->ht_table[table][idx];
while (ref && *ref) {
void *de_key = dictGetKey(*ref);
if (key == de_key || dictCompareKeys(d, key, de_key)) {
*table_index = table;
*plink = ref;
dictPauseRehashing(d);
return *ref;
}
ref = dictGetNextRef(*ref);
}
if (!dictIsRehashing(d)) return NULL;
}
return NULL;
}
void dictTwoPhaseUnlinkFree(dict *d, dictEntry *he, dictEntry **plink, int table_index) {
if (he == NULL) return;
d->ht_used[table_index]--;
*plink = dictGetNext(he);
dictFreeKey(d, he);
dictFreeVal(d, he);
if (!entryIsKey(he)) zfree(decodeMaskedPtr(he));
dictResumeRehashing(d);
}
void dictSetKey(dict *d, dictEntry* de, void *key) {
assert(!d->type->no_value);
if (d->type->keyDup)
de->key = d->type->keyDup(d, key);
else
de->key = key;
}
void dictSetVal(dict *d, dictEntry *de, void *val) {
assert(entryHasValue(de));
de->v.val = d->type->valDup ? d->type->valDup(d, val) : val;
}
void dictSetSignedIntegerVal(dictEntry *de, int64_t val) {
assert(entryHasValue(de));
de->v.s64 = val;
}
void dictSetUnsignedIntegerVal(dictEntry *de, uint64_t val) {
assert(entryHasValue(de));
de->v.u64 = val;
}
void dictSetDoubleVal(dictEntry *de, double val) {
assert(entryHasValue(de));
de->v.d = val;
}
int64_t dictIncrSignedIntegerVal(dictEntry *de, int64_t val) {
assert(entryHasValue(de));
return de->v.s64 += val;
}
uint64_t dictIncrUnsignedIntegerVal(dictEntry *de, uint64_t val) {
assert(entryHasValue(de));
return de->v.u64 += val;
}
double dictIncrDoubleVal(dictEntry *de, double val) {
assert(entryHasValue(de));
return de->v.d += val;
}
/* A pointer to the metadata section within the dict entry. */
void *dictEntryMetadata(dictEntry *de) {
assert(entryHasValue(de));
return &de->metadata;
}
void *dictGetKey(const dictEntry *de) {
if (entryIsKey(de)) return (void*)de;
if (entryIsNoValue(de)) return decodeEntryNoValue(de)->key;
return de->key;
}
void *dictGetVal(const dictEntry *de) {
assert(entryHasValue(de));
return de->v.val;
}
int64_t dictGetSignedIntegerVal(const dictEntry *de) {
assert(entryHasValue(de));
return de->v.s64;
}
uint64_t dictGetUnsignedIntegerVal(const dictEntry *de) {
assert(entryHasValue(de));
return de->v.u64;
}
double dictGetDoubleVal(const dictEntry *de) {
assert(entryHasValue(de));
return de->v.d;
}
/* Returns a mutable reference to the value as a double within the entry. */
double *dictGetDoubleValPtr(dictEntry *de) {
assert(entryHasValue(de));
return &de->v.d;
}
/* Returns the 'next' field of the entry or NULL if the entry doesn't have a
* 'next' field. */
static dictEntry *dictGetNext(const dictEntry *de) {
if (entryIsKey(de)) return NULL; /* there's no next */
if (entryIsNoValue(de)) return decodeEntryNoValue(de)->next;
return de->next;
}
/* Returns a pointer to the 'next' field in the entry or NULL if the entry
* doesn't have a next field. */
static dictEntry **dictGetNextRef(dictEntry *de) {
if (entryIsKey(de)) return NULL;
if (entryIsNoValue(de)) return &decodeEntryNoValue(de)->next;
return &de->next;
}
static void dictSetNext(dictEntry *de, dictEntry *next) {
assert(!entryIsKey(de));
if (entryIsNoValue(de)) {
dictEntryNoValue *entry = decodeEntryNoValue(de);
entry->next = next;
} else {
de->next = next;
}
}
/* Returns the memory usage in bytes of the dict, excluding the size of the keys
* and values. */
size_t dictMemUsage(const dict *d) {
return dictSize(d) * sizeof(dictEntry) +
dictSlots(d) * sizeof(dictEntry*);
}
size_t dictEntryMemUsage(void) {
return sizeof(dictEntry);
}
/* A fingerprint is a 64 bit number that represents the state of the dictionary
* at a given time, it's just a few dict properties xored together.
* When an unsafe iterator is initialized, we get the dict fingerprint, and check
* the fingerprint again when the iterator is released.
* If the two fingerprints are different it means that the user of the iterator
* performed forbidden operations against the dictionary while iterating. */
unsigned long long dictFingerprint(dict *d) {
unsigned long long integers[6], hash = 0;
int j;
integers[0] = (long) d->ht_table[0];
integers[1] = d->ht_size_exp[0];
integers[2] = d->ht_used[0];
integers[3] = (long) d->ht_table[1];
integers[4] = d->ht_size_exp[1];
integers[5] = d->ht_used[1];
/* We hash N integers by summing every successive integer with the integer
* hashing of the previous sum. Basically:
*
* Result = hash(hash(hash(int1)+int2)+int3) ...
*
* This way the same set of integers in a different order will (likely) hash
* to a different number. */
for (j = 0; j < 6; j++) {
hash += integers[j];
/* For the hashing step we use Tomas Wang's 64 bit integer hash. */
hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
hash = hash ^ (hash >> 24);
hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
hash = hash ^ (hash >> 14);
hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
hash = hash ^ (hash >> 28);
hash = hash + (hash << 31);
}
return hash;
}
void dictInitIterator(dictIterator *iter, dict *d)
{
iter->d = d;
iter->table = 0;
iter->index = -1;
iter->safe = 0;
iter->entry = NULL;
iter->nextEntry = NULL;
}
void dictInitSafeIterator(dictIterator *iter, dict *d)
{
dictInitIterator(iter, d);
iter->safe = 1;
}
void dictResetIterator(dictIterator *iter)
{
if (!(iter->index == -1 && iter->table == 0)) {
if (iter->safe)
dictResumeRehashing(iter->d);
else
assert(iter->fingerprint == dictFingerprint(iter->d));
}
}
dictIterator *dictGetIterator(dict *d)
{
dictIterator *iter = zmalloc(sizeof(*iter));
dictInitIterator(iter, d);
return iter;
}
dictIterator *dictGetSafeIterator(dict *d) {
dictIterator *i = dictGetIterator(d);
i->safe = 1;
return i;
}
dictEntry *dictNext(dictIterator *iter)
{
while (1) {
if (iter->entry == NULL) {
if (iter->index == -1 && iter->table == 0) {
if (iter->safe)
dictPauseRehashing(iter->d);
else
iter->fingerprint = dictFingerprint(iter->d);
}
iter->index++;
if (iter->index >= (long) DICTHT_SIZE(iter->d->ht_size_exp[iter->table])) {
if (dictIsRehashing(iter->d) && iter->table == 0) {
iter->table++;
iter->index = 0;
} else {
break;
}
}
iter->entry = iter->d->ht_table[iter->table][iter->index];
} else {
iter->entry = iter->nextEntry;
}
if (iter->entry) {
/* We need to save the 'next' here, the iterator user
* may delete the entry we are returning. */
iter->nextEntry = dictGetNext(iter->entry);
return iter->entry;
}
}
return NULL;
}
void dictReleaseIterator(dictIterator *iter)
{
dictResetIterator(iter);
zfree(iter);
}
/* Return a random entry from the hash table. Useful to
* implement randomized algorithms */
dictEntry *dictGetRandomKey(dict *d)
{
dictEntry *he, *orighe;
unsigned long h;
int listlen, listele;
if (dictSize(d) == 0) return NULL;
if (dictIsRehashing(d)) _dictRehashStep(d);
if (dictIsRehashing(d)) {
unsigned long s0 = DICTHT_SIZE(d->ht_size_exp[0]);
do {
/* We are sure there are no elements in indexes from 0