forked from cesar-rocha/wkb_baroclinic_modes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstandard_modes_wkb.tex
238 lines (213 loc) · 8.62 KB
/
standard_modes_wkb.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
\documentclass[11pt]{article}
%% WRY has commented out some unused packages %%
%% If needed, activate these by uncommenting
\usepackage{geometry} % See geometry.pdf to learn the layout options. There are lots.
%\geometry{letterpaper} % ... or a4paper or a5paper or ...
\geometry{a4paper,left=2.5cm,right=2.5cm,top=2.5cm,bottom=2.5cm}
%\geometry{landscape} % Activate for rotated page geometry
%\usepackage[parfill]{parskip} % Activate to begin paragraphs with an empty line rather than an indent
%for figures
%\usepackage{graphicx}
\usepackage{color}
\definecolor{mygreen}{RGB}{28,172,0} % color values Red, Green, Blue
\definecolor{mylilas}{RGB}{170,55,241}
%% for graphics this one is also OK:
\usepackage{epsfig}
%% AMS mathsymbols are enabled with
\usepackage{amssymb,amsmath}
%% more options in enumerate
\usepackage{enumerate}
\usepackage{enumitem}
%% insert code
\usepackage{listings}
\usepackage[utf8]{inputenc}
\usepackage{hyperref}
%% colors
\usepackage{graphicx,xcolor,lipsum}
\usepackage{mathtools}
\usepackage{graphicx}
\newcommand*{\matminus}{%
\leavevmode
\hphantom{0}%
\llap{%
\settowidth{\dimen0 }{$0$}%
\resizebox{1.1\dimen0 }{\height}{$-$}%
}%
}
\title{WKB approximate solutions for standard baroclinic modes}
\author{Cesar B Rocha\thanks{Scripps Institution of Oceanography, University of California, San Diego; \texttt{[email protected]}}}
\date{\today}
\begin{document}
\include{mysymbols}
\maketitle
In this notes I derive approximate WKB solutions to the standard baroclinic modes of physical oceanography. The elementary textbook example with constant buoyancy frequency is recovered as a special case.
\section{Pressure modes}
The standard baroclinic modes for pressure, here denoted $\sp_n(z)$, is defined by the regular Sturm-Liouville eigenproblem
\beq
\label{eigpb}
\sL \sp_n = -\kappa_n^2 \sp_n\com
\eeq
with homogeneous Neumann boundary conditions
\beq
\label{bc}
@z = -h,\,0:\qquad \sp_n' = 0\com
\eeq
and the self-adjoint Linear operator
\beq
\label{strech}
\sL \defn \frac{\dd}{\dd z}\frac{f_0^2}{N^2}\frac{\dd}{\dd z} \per
\eeq
Hence the eigenmodes, $\sp_n$, are orthogonal. The real egeinvalues, $\kappa_n$, are the deformation wavenumber of the $n$'th mode. It is convenient to normalize the eigenmodes to have the unit $L^2$-norm
\beq
\label{normalization0}
\frac{1}{H}\int_{-h}^{0}\!\! \sp_n \sp_m \dd z = \delta_{mn}\com
\eeq
where $\delta_{mn}$ is the Dirac delta. Equation \eqref{eigpb} can be rewritten as
\beq
\label{eigpb_wkb}
\bur \sp_n'' + \left[\bur\right]' \sp_n' + \kappa_n^2 \,\sp_n = 0\per
\eeq
Introducing the following definitions
\beq
\label{notation}
\ep \defn \frac{1}{\kappa_n} \qquad \text{and} \qquad S^2(z) \defn \ibur \per
\eeq
we have the renotated equation
\beq
\label{dirich_eigpb_wkb_ep}
\ep^2\, \sp_n'' -\ep^2 \left[\log S^2(z)\right]' \sp_n' + S^2(z) \sp_n = 0\per
\eeq
In the WKB spirit we assume that $S^2(z)$ is slowly varying i.e., the buoyancy frequency $N^2(z)$ does not vary very fast. (This assumption may be problematic near the base of the mixed-layer.) We also assume that $\ep$ is small; the accuracy of the WKB solution improves with mode number. We now make the exponential approximation (e.g., Bender and Orszag)
\beq
\sp_n^e \defn \ee^{Q(z)/\ep}\per
\eeq
Hence
\beq
{\sp_n^e}' = \frac{Q'(z)}{\ep}\sp_n^e\com
\eeq
and
\beq
{\sp_n^e}'' = \left[\left(\frac{Q'(z)}{\ep}\right)^2 + \frac{Q''(z)}{\ep} \right]\sp_n^e\com
\eeq
Next we expand $Q(z)$ in powers of $\ep$
\beq
\label{aseries}
Q(z) = Q_0(z) + \ep\,Q_1(z) + \ep^2\,Q_2(z) + \mathcal{O}(\ep^3)\per
\eeq
Substituting \eqref{aseries} in \eqref{dirich_eigpb_wkb_ep} we obtain, to lowest order, $\mathcal{O}(\ep^0)$,
\beq
\label{lowest_order_eqn}
Q_0'^2 + S^2(z) = 0\per
\eeq
Thus
\beq
\label{Q0}
Q_0 = \pm \ii \int^z \!\!\!S(\xi) \,\dd \xi = \pm \ii \tfrac{1}{f_0} \int^z \!\!\!N(\xi) \,\dd \xi \per
\eeq
At next order, $\mathcal{O}(\ep)$, we have
\beq
\label{first_order_eqn}
2\,Q_0'Q_1' + Q_0'' - Q_0' \left[\log S^2(z)\right]' = 0\per
\eeq
Hence
\beq
\label{Q_1}
Q_1 = \frac{1}{2} \log S^2(z) - \frac{1}{2}\log \pm \ii S(z) + \text{const}\,\, \per
\eeq
Notice that the imaginary part in the $\log$ in \eqref{Q_1} just contributes an irrelevant constant. Thus
\beq
Q_1 = \log \sqrt{S(z)} + \text{const} \,\, \per
\eeq
In the most common WKB approximation (a.k.a ``physical optics'') we truncate \eqref{aseries} at $\mathcal{O}(\ep)$. The solution to \eqref{dirich_eigpb_wkb_ep}, consistent with the bottom boundary condition \eqref{bc}, is
\beq
\sp_n^{po} = A_n\, \sqrt{N(z)}\, \cos \left(\frac{\kappa_n}{f_0} \int_{-h}^{z} \!\!\!N(\xi) \dd \xi\right)\com
\eeq
where $A_n$ is a constant. By imposing the boundary condition at $z=0$ \eqref{bc}, we obtain the eigenvalues $\kappa_n$:
\beq
\label{kappan}
\kappa_n = \frac{n \pi \, f_0}{\overline{N}\,h} \com\qquad n=0,1,2,\ldots \com
\eeq
where the mean buoyancy frequency is
\beq
\label{N_avg}
\overline{N} \defn\frac{1}{h} \int_{-h}^0N(\xi)\dd \xi\per
\eeq
The constant $A_n$ is determined by the normalization condition \eqref{normalization0}. We have
\beq
\label{an_eqn}
A_n^2 \, \int_{-h}^{0}\!\! N(z) \cos \left(\frac{\kappa_n}{f_0}\int_{-h}^{z}\!\!\!N(\xi) \dd \xi\right) \dd z = H\com\qquad n\ge 1\per
\eeq
The integral in \eqref{an_eqn} can be evaluated exactly by making the change of variables
\beq
\eta \defn \frac{\kappa_n}{f_0}\int_{-h}^{z}\!\!\! N(\xi) \dd \xi \qquad \Rightarrow \qquad \dd\eta = \frac{\kappa_n}{f_0}N(z) \dd z\com
\eeq
and using the expression for the eigenvalues \eqref{kappan}. We obtain
\beq
A_n = \Big(2/\overline{N} \Big)^{1/2} \com\qquad n\ge 1\per
\eeq
Thus the WKB approximate solution to the standard pressure modes is
\beq
\sp_n^{po} = \left[\frac{2\,N(z)}{\Nb} \right]^{1/2}\!\!\cos\left( \frac{n \pi}{\Nb\,h} \,\,\,\int_{-h}^{z} \!N(\xi) \dd \xi\right)\com\qquad n\ge1\per
\eeq
The amplitude of the baroclinic modes at the boundaries is independent of the eigenvalue:
\beq
\sp_n^{po}(z=0) = (-1)^{n} \left[\frac{2 N(0)}{\Nb}\right]^{1/2}\com
\eeq
and
\beq
\sp_n^{po}(z=-h) = \left[\frac{2 N(-h)}{\Nb}\right]^{1/2}\per
\eeq
The barotropic mode is not recovered from the WKB solution because $\kappa_0 = 0$. From \eqref{eigpb} we have that with $\kappa_0 = 0$, the barotropic mode is constant, independent of the stratification. With the normalization \eqref{normalization0} we obtain $\sp_0 = 1$.
\subsection*{Constant buoyancy frequency}
With $N = \text{const.}$ the modes are simple sinusoids. That exact result is recovered as a special case of the WKB solution
\beq
\sp_n^{po} = \sqrt{2} \cos\left[n \pi (1+z/h)\right]\per
\eeq
\section{Density modes}
Similarly the baroclinic modes for density, here denoted by $\sr_n$, are defined via the eigenproblem
\beq
\label{eig_prob_rho}
\sr_n'' = -\kappa_n^2 \ibur \sr_n\com
\eeq
with homogeneous Dirichlet boundary conditions
\beq
\label{rho_bc}
@z = -h,0: \qquad \sr_n = 0\com
\eeq
and normalization
\beq
\label{normalization2}
\frac{1}{h}\int_{-h}^0 \!\!\sr_n \sr_m \dd z = \delta_{mn}\per
\eeq
Alternatively, we can work on the approximation from the beginning. The WKB approximate solution to \eqref{eig_prob_rho}-\eqref{rho_bc}, consistent with the bottom boundary conditions \eqref{rho_bc}, is
\beq
\sr_n^{po} = \frac{B_n}{\sqrt{N(z)}} \sin \left(\frac{\kappa_n}{f_0} \int_{-h}^{z} N(\xi)\dd \xi \right) \com
\eeq
The eigenvalues $\kappa_n$ are the same as before \eqref{kappan}. (This should be no surprise because it follow from the definition of $\sp_n$ and $\sr_n$. Nonetheless, the verification is a good sanity check.) To find $B_n$ we use the normalization \eqref{normalization2}
\beq
\label{bn_eqn}
B_n^2 \, \int_{-h}^{0}\!\!\frac{1}{N(z)} \sin \left(\frac{\kappa_n}{f_0}\int_{-h}^{z}\!\!\!N(\xi) \dd \xi\right) \dd z = h\com\qquad n\ge 1\per
\eeq
We use a similar trick as above i.e., we change variables with
\beq
\eta \defn \frac{\kappa_n}{N^2(z) f_0}\int_{-h}^{z}\!\!\! N(\xi) \dd \xi \qquad \Rightarrow \qquad \dd\eta = \frac{\kappa_n}{N(z) f_0} \dd z\com
\eeq
where, in the WKB spirit, we used the fact that $N(z)$ is slowly varying when differentiating the relation above. We obtain
\beq
B_n = \Big(2/\Nb\Big)^{1/2}\per
\eeq
Thus the WKB approximate solution to the density modes is
\beq
\label{rpo_final}
\sr_n^{po} = \left(\frac{2}{\Nb N(z)}\right) \sin \left(\frac{n \pi}{\Nb\,h} \int_{-h}^{z} N(\xi)\dd \xi \right)\com\qquad n\ge 1 \per
\eeq
Finally, note that the modes are simply related
\beq
\frac{\dd \sr_n^{po}}{\dd z} = \underbrace{\frac{n\pi}{\Nb\,h}}_{=\kappa_n/f_0}\,\sp_n^{po}\per
\eeq
\subsection*{Constant buoyancy frequency}
Again we recover the $N = \text{const.}$ special case from \eqref{rpo_final}:
\beq
\sr_n^{po} = \frac{\sqrt{2}}{\Nb} \sin \left[n\pi(1 + z/h)\right]\per
\eeq
\end{document}