-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathCV.py
101 lines (70 loc) · 2.39 KB
/
CV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#coding:utf-8
import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt
import math
from pylab import*
Image = cv2.imread('1.bmp',1) #读入原图
image = cv2.cvtColor(Image,cv2.COLOR_BGR2GRAY)
img=np.array(image,dtype=np.float64) #读入到np的array中,并转化浮点类型
#初始水平集函数
IniLSF = np.ones((img.shape[0],img.shape[1]),img.dtype)
IniLSF[30:80,30:80]= -1
IniLSF=-IniLSF
#画初始轮廓
Image = cv2.cvtColor(Image,cv2.COLOR_BGR2RGB)
plt.figure(1),plt.imshow(Image),plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
plt.contour(IniLSF,[0],color = 'b',linewidth=2) #画LSF=0处的等高线
plt.draw(),plt.show(block=False)
def mat_math (intput,str):
output=intput
for i in range(img.shape[0]):
for j in range(img.shape[1]):
if str=="atan":
output[i,j] = math.atan(intput[i,j])
if str=="sqrt":
output[i,j] = math.sqrt(intput[i,j])
return output
#CV函数
def CV (LSF, img, mu, nu, epison,step):
Drc = (epison / math.pi) / (epison*epison+ LSF*LSF)
Hea = 0.5*(1 + (2 / math.pi)*mat_math(LSF/epison,"atan"))
Iy, Ix = np.gradient(LSF)
s = mat_math(Ix*Ix+Iy*Iy,"sqrt")
Nx = Ix / (s+0.000001)
Ny = Iy / (s+0.000001)
Mxx,Nxx =np.gradient(Nx)
Nyy,Myy =np.gradient(Ny)
cur = Nxx + Nyy
Length = nu*Drc*cur
Lap = cv2.Laplacian(LSF,-1)
Penalty = mu*(Lap - cur)
s1=Hea*img
s2=(1-Hea)*img
s3=1-Hea
C1 = s1.sum()/ Hea.sum()
C2 = s2.sum()/ s3.sum()
CVterm = Drc*(-1 * (img - C1)*(img - C1) + 1 * (img - C2)*(img - C2))
LSF = LSF + step*(Length + Penalty + CVterm)
#plt.imshow(s, cmap ='gray'),plt.show()
return LSF
#模型参数
mu = 1
nu = 0.003 * 255 * 255
num = 20
epison = 1
step = 0.1
LSF=IniLSF
for i in range(1,num):
LSF = CV(LSF, img, mu, nu, epison,step) #迭代
if i % 1 == 0: #显示分割轮廓
plt.imshow(Image),plt.xticks([]), plt.yticks([])
plt.contour(LSF,[0],colors='r',linewidth=2)
plt.draw(),plt.show(block=False),plt.pause(0.01)
#kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5, 5))#定义结构元素
#closed = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)#闭运算
#img_=cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#plt.imshow(img_)
#plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
#plt.show()