-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspacy_features_sklearn_crfsuite.py
171 lines (144 loc) · 5.2 KB
/
spacy_features_sklearn_crfsuite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
from collections import Counter
from pprint import pprint
from time import time
from typing import List, Tuple, NamedTuple
import sklearn_crfsuite
import spacy
from spacy.tokenizer import Tokenizer
from seq_tag_util import bilou2bio, spanlevel_pr_re_f1, calc_seqtag_tokenlevel_scores
class Params(NamedTuple):
c1: float = 0.5
c2: float = 0.0
max_it: int = 200
class SpacyCrfSuiteTagger(object):
def __init__(
self, nlp=None, verbose=False, params: Params = Params(),
):
self.params = params
self.spacy_nlp = (
spacy.load("en_core_web_sm", disable=["parser"]) if nlp is None else nlp
)
self.spacy_nlp.tokenizer = Tokenizer(self.spacy_nlp.vocab)
self.verbose = verbose
def fit(self, data: List[List[Tuple[str, str]]]):
tag_counter = Counter([tag for sent in data for _, tag in sent])
self.tag2count = {t: c for t, c in tag_counter.items() if t != "O"}
# # print(tag2count)
#
# dictionary = Dictionary()
# [dictionary.add_item(t) for t in tag2count]
# dictionary.add_item('O')
start = time()
processed_data = [
self.extract_features_with_spacy([token for token, tag in datum])
for datum in data
]
if self.verbose:
print("spacy-processing train-data took: %0.2f" % (time() - start))
self.crf = sklearn_crfsuite.CRF(
algorithm="lbfgs",
c1=self.params.c1,
c2=self.params.c2,
max_iterations=self.params.max_it,
all_possible_transitions=True,
)
targets = [[tag for token, tag in datum] for datum in data]
start = time()
self.crf.fit(processed_data, targets)
if self.verbose:
print("crfsuite-fitting took: %0.2f" % (time() - start))
def extract_features_with_spacy(self, tokens: List[str]):
text = " ".join(tokens)
try:
doc = self.spacy_nlp(text)
assert len(doc) == len(tokens)
features = [
{
"text": token.text,
"lemma": token.lemma_,
"pos": token.pos_,
# 'dep':token.dep_,
"shape": token.shape_,
"is_alpha": token.is_alpha,
"is_stop": token.is_stop,
}
for token in doc
]
except BaseException:
features = [{"text": ""}]
return features
def predict(self, data):
processed_data = [self.extract_features_with_spacy(datum) for datum in data]
y_pred = self.crf.predict(processed_data)
return y_pred
def predict_marginals(self, data):
processed_data = [self.extract_features_with_spacy(datum) for datum in data]
probas = self.crf.predict_marginals(processed_data)
return probas
if __name__ == "__main__":
from reading_seqtag_data import read_conll03_en
# data_path = home+'/data/scierc_data/processed_data/json/'
# datasets = read_scierc_data(data_path)
path = os.environ["HOME"] + "/data/IE/seqtag_data"
datasets = read_conll03_en(path)
train_data, test_data = datasets.train[:1000], datasets.test
print("train/test-set-len: %d / %d" % (len(train_data), len(test_data)))
tagger = SpacyCrfSuiteTagger(params=Params(c1=0.5, c2=0.0, max_it=10))
tagger.fit(train_data)
y_pred = tagger.predict([[token for token, tag in datum] for datum in train_data])
y_pred = [bilou2bio([tag for tag in datum]) for datum in y_pred]
targets = [bilou2bio([tag for token, tag in datum]) for datum in train_data]
pprint(Counter([t for tags in targets for t in tags]))
pprint(
"train-f1-macro: %0.2f"
% calc_seqtag_tokenlevel_scores(targets, y_pred)["f1-macro"]
)
pprint(
"train-f1-micro: %0.2f"
% calc_seqtag_tokenlevel_scores(targets, y_pred)["f1-micro"]
)
_, _, f1 = spanlevel_pr_re_f1(y_pred, targets)
pprint("train-f1-spanwise: %0.2f" % f1)
y_pred = tagger.predict([[token for token, tag in datum] for datum in test_data])
y_pred = [bilou2bio([tag for tag in datum]) for datum in y_pred]
targets = [bilou2bio([tag for token, tag in datum]) for datum in test_data]
pprint(
"test-f1-macro: %0.2f"
% calc_seqtag_tokenlevel_scores(targets, y_pred)["f1-macro"]
)
pprint(
"test-f1-micro: %0.2f"
% calc_seqtag_tokenlevel_scores(targets, y_pred)["f1-micro"]
)
_, _, f1 = spanlevel_pr_re_f1(y_pred, targets)
pprint("test-f1-spanwise: %0.2f" % f1)
"""
# UD_English_data
spacy-processing train-data took: 66.69
crfsuite-fitting took: 31.05
'test-f1-macro: 0.70'
# SCIERC
'train-f1-macro: 0.76'
'train-f1-micro: 0.91'
'train-f1-spanwise: 0.73'
'test-f1-macro: 0.53'
'test-f1-micro: 0.82'
'test-f1-spanwise: 0.48'
# scierc
train/test-set-len: 1861 / 551
'train-f1-macro: 0.90'
'train-f1-micro: 0.96'
'train-f1-spanwise: 0.86'
'test-f1-macro: 0.54'
'test-f1-micro: 0.82'
'test-f1-spanwise: 0.49'
# JNLPBA
train/test-set-len: 16807 / 3856
'train-f1-macro: 0.86'
'train-f1-micro: 0.95'
'train-f1-spanwise: 0.81'
'test-f1-macro: 0.69'
'test-f1-micro: 0.91'
'test-f1-spanwise: 0.63'
"""