-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathinference_hf.py
123 lines (100 loc) · 3.83 KB
/
inference_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import os
import copy
import json
import time
import torch
import argparse
import soundfile as sf
from tqdm import tqdm
from diffusers import DDPMScheduler
from audioldm_eval import EvaluationHelper
from models import build_pretrained_models, AudioDiffusion
from transformers import AutoProcessor, ClapModel
import torchaudio
from tango import Tango
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def parse_args():
parser = argparse.ArgumentParser(description="Inference for text to audio generation task.")
parser.add_argument(
"--checkpoint", type=str, default="declare-lab/tango",
help="Tango huggingface checkpoint"
)
parser.add_argument(
"--test_file", type=str, default="data/test_audiocaps_subset.json",
help="json file containing the test prompts for generation."
)
parser.add_argument(
"--text_key", type=str, default="captions",
help="Key containing the text in the json file."
)
parser.add_argument(
"--device", type=str, default="cuda:0",
help="Device to use for inference."
)
parser.add_argument(
"--test_references", type=str, default="data/audiocaps_test_references/subset",
help="Folder containing the test reference wav files."
)
parser.add_argument(
"--num_steps", type=int, default=200,
help="How many denoising steps for generation.",
)
parser.add_argument(
"--guidance", type=float, default=3,
help="Guidance scale for classifier free guidance."
)
parser.add_argument(
"--batch_size", type=int, default=8,
help="Batch size for generation.",
)
args = parser.parse_args()
return args
def main():
args = parse_args()
num_steps, guidance, batch_size = args.num_steps, args.guidance, args.batch_size
checkpoint = args.checkpoint
# Load Models #
tango = Tango(checkpoint, args.device)
vae, stft, model = tango.vae, tango.stft, tango.model
scheduler = DDPMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="scheduler")
evaluator = EvaluationHelper(16000, "cuda:0")
# Load Data #
prefix = ""
text_prompts = [json.loads(line)[args.text_key] for line in open(args.test_file).readlines()]
text_prompts = [prefix + inp for inp in text_prompts]
exp_id = str(int(time.time()))
if not os.path.exists("outputs"):
os.makedirs("outputs")
output_dir = "outputs/{}_steps_{}_guidance_{}".format(exp_id, num_steps, guidance)
os.makedirs(output_dir, exist_ok=True)
# Generate #
all_outputs = []
for k in tqdm(range(0, len(text_prompts), batch_size)):
text = text_prompts[k: k+batch_size]
with torch.no_grad():
latents = model.inference(text, scheduler, num_steps, guidance)
mel = vae.decode_first_stage(latents)
wave = vae.decode_to_waveform(mel)
all_outputs += [item for item in wave]
# Save #
for j, wav in enumerate(all_outputs):
sf.write("{}/output_{}.wav".format(output_dir, j), wav, samplerate=16000)
result = evaluator.main(output_dir, args.test_references)
result["Steps"] = num_steps
result["Guidance Scale"] = guidance
result["Test Instances"] = len(text_prompts)
result["scheduler_config"] = dict(scheduler.config)
result["args"] = dict(vars(args))
result["output_dir"] = output_dir
with open("outputs/tango_checkpoint_summary.jsonl", "a") as f:
f.write(json.dumps(result) + "\n\n")
if __name__ == "__main__":
main()