Skip to content

Latest commit

 

History

History
116 lines (102 loc) · 4.46 KB

README.md

File metadata and controls

116 lines (102 loc) · 4.46 KB

Underwater Image Enhancement Baselines

This repository provides implementation of some underwater image enhancement methods and datasets, including:

Supported Methods

Method Pub Language Paper Reference Codes
Fusion 2012 CVPR MATLAB Enhancing Underwater Images and Videos by Fusion Fusion
UWCNN 2020 PR Pytorch Underwater Scene Prior Inspired Deep Underwater Image and Video Enhancement UWCNN
UIEC2Net 2021 SPIC Pytorch UIEC^2-Net: CNN-based Underwater Image Enhancement Using Two Color Space UIEC2Net
MLLE 2022 TIP MATLAB Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement MLLE
UTrans 2023 TIP Pytorch U-Shape Transformer for Underwater Image Enhancement UTrans
NU2Net 2023 AAAI Pytorch Underwater Ranker: Learn Which Is Better and How to Be Better NU2Net
FiveAPlus 2023 BMVC Pytorch Five A+ Network: You Only Need 9K Parameters for Underwater Image Enhancement FiveAPlus

Supported Datasets

Dataset Link
UIEB https://li-chongyi.github.io/proj_benchmark.html
U45 https://github.com/IPNUISTlegal/underwater-test-dataset-U45-
LSUI https://github.com/LintaoPeng/U-shape_Transformer_for_Underwater_Image_Enhancement

Environment

conda create -n uie python=3.9
conda activate uie

pip install torch==1.13.0+cu117 torchvision==0.14.0+cu117 torchaudio==0.13.0 -f https://download.pytorch.org/whl/torch_stable.html

pip install pyiqa

pip install pytorch_lightning==2.0.9.post0

Prepare Data

Download the UIEB dataset in the ./data/UIEB/ folder, then you have three subfolders raw-890/, reference-890/, challenging-60/, just like:

./data/UIEB/
├── challenging-60/
├── challenging.txt
├── raw-890/
├── reference-890/
├── test.txt
└── train.txt

Download the LSUI dataset in the ./data/LSUI/ folder, then you have two subfolders GT/, input/, just like:

./data/LSUI/
├── GT/
├── input/
├── test.txt
└── train.txt

Train

Train on the training set of UIEB dataset:

python train_UIEB.py --model_name UIEC2Net --batch_size 16 --epochs 100

We provide four models' checkpoints trained on UIEB dataset in the ./checkpoints/UIEB/ folder:

./checkpoints/UIEB/
├── FIVE_APLUS.ckpt
├── NU2Net.ckpt
├── UIEC2Net.ckpt
└── UWCNN.ckpt

Test

After training, you can enhance the images in the test set and challenging set of UIEB dataset:

python test_UIEB.py --model_name UIEC2Net

The generated enhanced images are saved in the ./data/UIEB/All_Results/ folder. The folder's structure is like:

./data/UIEB/All_Results/
├── FIVE_APLUSNet
│   ├── C60/
│   └── T90/
├── NU2Net
│   ├── C60/
│   └── T90/
├── UIEC2Net
│   ├── C60/
│   └── T90/
├── UTrans
│   ├── C60/
│   └── T90/
└── UWCNN
    ├── C60/
    └── T90/

Each subfolder corresponds to the results of one method.

Evaluation

After testing, you can evaluate any method's perfermance on the test set of UIEB dataset:

python evaluate_UIEB.py --method_name UIEC2Net --folder T90

or you can evaluate perfermance on the challenging set of UIEB dataset:

python evaluate_UIEB.py --method_name UIEC2Net --folder C60

Citation

@article{du2023uiedp,
  title={UIEDP: Underwater Image Enhancement with Diffusion Prior},
  author={Du, Dazhao and Li, Enhan and Si, Lingyu and Xu, Fanjiang and Niu, Jianwei and Sun, Fuchun},
  journal={arXiv preprint arXiv:2312.06240},
  year={2023}
}