forked from kaixindelele/ChatPaper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat_response.py
155 lines (130 loc) · 5.51 KB
/
chat_response.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import configparser
import datetime
import json
import os
import re
import time
from collections import namedtuple
import numpy as np
import openai
import tenacity
import tiktoken
from get_paper import Paper
# ChatResponse
ResponseParams = namedtuple(
"Params", ["comment_path", "file_format", "language"]
)
# 定义Response类
class Response:
# 初始化方法,设置属性
def __init__(self, args=None):
if args.language == 'en':
self.language = 'English'
elif args.language == 'zh':
self.language = 'Chinese'
else:
self.language = 'Chinese'
# 创建一个ConfigParser对象
self.config = configparser.ConfigParser()
# 读取配置文件
self.config.read('apikey.ini')
OPENAI_KEY = os.environ.get("OPENAI_KEY", "")
# 获取某个键对应的值
self.chat_api_list = self.config.get('OpenAI', 'OPENAI_API_KEYS')[1:-1].replace('\'', '').split(',')
self.chat_api_list.append(OPENAI_KEY)
# prevent short strings from being incorrectly used as API keys.
self.chat_api_list = [api.strip() for api in self.chat_api_list if len(api) > 20]
self.cur_api = 0
self.file_format = args.file_format
self.max_token_num = 4096
self.encoding = tiktoken.get_encoding("gpt2")
def response_by_chatgpt(self, comment_path):
htmls = []
# 读取回复的内容
with open(comment_path, 'r') as file:
comments = file.read()
chat_response_text = self.chat_response(text=comments)
htmls.append(chat_response_text)
# 将审稿意见保存起来
date_str = str(datetime.datetime.now())[:13].replace(' ', '-')
export_path = os.path.join('./', 'response_file')
if not os.path.exists(export_path):
os.makedirs(export_path)
file_name = os.path.join(export_path, date_str + '-Response.' + self.file_format)
self.export_to_markdown("\n".join(htmls), file_name=file_name)
htmls = []
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, max=10),
stop=tenacity.stop_after_attempt(5),
reraise=True)
def chat_response(self, text):
openai.api_key = self.chat_api_list[self.cur_api]
self.cur_api += 1
self.cur_api = 0 if self.cur_api >= len(self.chat_api_list) - 1 else self.cur_api
response_prompt_token = 1000
text_token = len(self.encoding.encode(text))
input_text_index = int(len(text) * (self.max_token_num - response_prompt_token) / text_token)
input_text = "This is the review comments:" + text[:input_text_index]
messages = [
{"role": "system", "content": """You are the author, you submitted a paper, and the reviewers gave the review comments.
Please reply with what we have done, not what we will do.
You need to extract questions from the review comments one by one, and then respond point-to-point to the reviewers’ concerns.
Please answer in {}. Follow the format of the output later:
- Response to reviewers
#1 reviewer
Concern #1: xxxx
Author response: xxxxx
Concern #2: xxxx
Author response: xxxxx
...
#2 reviewer
Concern #1: xxxx
Author response: xxxxx
Concern #2: xxxx
Author response: xxxxx
...
#3 reviewer
Concern #1: xxxx
Author response: xxxxx
Concern #2: xxxx
Author response: xxxxx
...
""".format(self.language)
},
{"role": "user", "content": input_text},
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
)
result = ''
for choice in response.choices:
result += choice.message.content
print("********" * 10)
print(result)
print("********" * 10)
print("prompt_token_used:", response.usage.prompt_tokens)
print("completion_token_used:", response.usage.completion_tokens)
print("total_token_used:", response.usage.total_tokens)
print("response_time:", response.response_ms / 1000.0, 's')
return result
def export_to_markdown(self, text, file_name, mode='w'):
# 使用markdown模块的convert方法,将文本转换为html格式
# html = markdown.markdown(text)
# 打开一个文件,以写入模式
with open(file_name, mode, encoding="utf-8") as f:
# 将html格式的内容写入文件
f.write(text)
def chat_response_main(args):
Response1 = Response(args=args)
Response1.response_by_chatgpt(comment_path=args.comment_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--comment_path", type=str, default='review_comments.txt', help="path of comment")
parser.add_argument("--file_format", type=str, default='txt', help="output file format")
parser.add_argument("--language", type=str, default='en', help="output lauguage, en or zh")
response_args = ResponseParams(**vars(parser.parse_args()))
# args = parser.parse_args()
start_time = time.time()
chat_response_main(args=response_args)
print("response time:", time.time() - start_time)