forked from gronlund/kmeans1d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtiming.cpp
238 lines (216 loc) · 8.37 KB
/
timing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#include <algorithm>
#include <chrono>
#include <ctime>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <memory>
#include <random>
#include <string>
#include "omp.h"
#include "kmeans.h"
using namespace std;
static std::string datafile_name = "data.csv";
static size_t start = 1000000;
static size_t increment = 10000000;
static omp_lock_t lock;
class input_generator {
public:
explicit input_generator() {}
input_generator(const input_generator&) = delete;
input_generator& operator=(const input_generator&) = delete;
~input_generator() = default;
virtual vector<double> generate(size_t n) = 0;
};
class input_generator_uniform : public input_generator {
public:
explicit input_generator_uniform() {}
input_generator_uniform(const input_generator_uniform&) = delete;
input_generator_uniform& operator=(const input_generator_uniform&) = delete;
~input_generator_uniform() = default;
vector<double> generate(size_t n) override {
mt19937 mt(time(0));
vector<double> res(n, 0);
double factor = 1e6;
double maximum = 0;
for (size_t i = 0; i < n; ++i) {
res[i] = mt();
maximum = std::max(maximum, res[i]);
}
std::sort(res.begin(), res.end());
for (auto &v : res) {
v = (v / maximum) * factor;
}
return res;
}
};
class input_generator_gauss_mixture : public input_generator {
public:
explicit input_generator_gauss_mixture() {}
input_generator_gauss_mixture(const input_generator_gauss_mixture&) = delete;
input_generator_gauss_mixture& operator=(const input_generator_gauss_mixture&) = delete;
~input_generator_gauss_mixture() = default;
vector<double> generate(size_t n) override {
size_t k = 16;
std::vector<double> centers(k, 0);
for (size_t i = 0; i < k; ++i) {
centers[i] = i * 1e6;
}
mt19937 mt(time(0));
std::normal_distribution<double> gauss(0.0, 100.0);
vector<double> res(n, 0);
double factor = 1e6;
double maximum = 0;
for (size_t i = 0; i < n; ++i) {
size_t cluster = mt() % k;
res[i] = centers[cluster] + gauss(mt);
maximum = std::max(maximum, res[i]);
}
std::sort(res.begin(), res.end());
return res;
}
};
vector<double> generate(size_t n) {
mt19937 mt(time(0));
vector<double> res(n, 0);
double factor = 1e6;
double maximum = 0;
for (size_t i = 0; i < n; ++i) {
res[i] = mt();
maximum = std::max(maximum, res[i]);
}
std::sort(res.begin(), res.end());
for (auto &v : res) {
v = (v / maximum) * factor;
}
return res;
}
struct kmeans_wilber_binary {};
struct kmeans_wilber_interpolation {};
template<typename alg>
std::chrono::milliseconds time_compute(vector<double> &points, size_t k) {
auto start = std::chrono::high_resolution_clock::now();
unique_ptr<kmeans> f(new alg(points));
unique_ptr<kmeans_result> res = f->compute(k);
auto end = std::chrono::high_resolution_clock::now();
omp_set_lock(&lock);
std::cout << "[" << f->name() << "] "
<< "[k = " << k << "] [n = " << points.size() << "] "
<< "[cost = " << res->cost << "]" << std::endl;
omp_unset_lock(&lock);
return std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
}
template<>
std::chrono::milliseconds time_compute<kmeans_wilber_binary>(vector<double> &points, size_t k) {
auto start = std::chrono::high_resolution_clock::now();
unique_ptr<kmeans_wilber> f(new kmeans_wilber(points));
f->set_search_strategy(search_strategy::BINARY);
unique_ptr<kmeans_result> res = f->compute(k);
auto end = std::chrono::high_resolution_clock::now();
omp_set_lock(&lock);
std::cout << "[" << f->name() << "] "
<< "[k = " << k << "] [n = " << points.size() << "] "
<< "[cost = " << res->cost << "]" << std::endl;
omp_unset_lock(&lock);
return std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
}
template<>
std::chrono::milliseconds time_compute<kmeans_wilber_interpolation>(vector<double> &points, size_t k) {
auto start = std::chrono::high_resolution_clock::now();
unique_ptr<kmeans_wilber> f(new kmeans_wilber(points));
f->set_search_strategy(search_strategy::INTERPOLATION);
unique_ptr<kmeans_result> res = f->compute(k);
auto end = std::chrono::high_resolution_clock::now();
omp_set_lock(&lock);
std::cout << "[" << f->name() << "] "
<< "[k = " << k << "] [n = " << points.size() << "] "
<< "[cost = " << res->cost << "]" << std::endl;
omp_unset_lock(&lock);
return std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
}
template<typename alg>
std::chrono::milliseconds time_compute_and_report(vector<double> &points, size_t k) {
auto start = std::chrono::high_resolution_clock::now();
unique_ptr<kmeans> f(new alg(points));
unique_ptr<kmeans_result> res = f->compute_and_report(k);
auto end = std::chrono::high_resolution_clock::now();
omp_set_lock(&lock);
std::cout << "[" << f->name() << "] "
<< "[k = " << k << "] [n = " << points.size() << "] "
<< "[cost = " << res->cost << "]" << std::endl;
omp_unset_lock(&lock);
return std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
}
int run(std::unique_ptr<input_generator> const &g, std::string outfilename) {
//vector<size_t> ks = {1, 10, 50, 100, 500};
vector<size_t> ks = {10, 20};
{
ofstream f(datafile_name, ios_base::out);
f << "n,k,dp-linear,dp-monotone,dp-linear-hirsch,dp-monotone-hirsch,lloyd_report,wilber" << std::endl;
}
omp_init_lock(&lock);
for (size_t n = start; ; n += increment) {
vector<double> points = g->generate(n);
for (size_t i = 0; i < ks.size(); ++i) {
size_t k = ks[i];
std::chrono::milliseconds linear_time, monotone_time, linear_time_report, monotone_time_report;
std::chrono::milliseconds lloyd_time_report, wilber_time, wilber_binary_time;
#pragma omp parallel for
for (size_t alg = 0; alg < 6; ++alg) {
switch (alg) {
case 0:
linear_time = time_compute<kmeans_linear>(points, k);
break;
case 1:
monotone_time = time_compute<kmeans_monotone>(points, k);
break;
case 2:
linear_time_report = time_compute_and_report<kmeans_linear>(points, k);
break;
case 3:
monotone_time_report = time_compute_and_report<kmeans_monotone>(points, k);
break;
case 4:
lloyd_time_report = time_compute_and_report<kmeans_lloyd_fast>(points, k);
break;
case 5:
wilber_time = time_compute<kmeans_wilber_interpolation>(points, k);
break;
case 6:
wilber_binary_time = time_compute<kmeans_wilber_binary>(points, k);
break;
}
}
omp_set_lock(&lock);
{
ofstream f(datafile_name, ios_base::app);
f << n << "," << k << ","
<< linear_time.count() << ","
<< monotone_time.count() << ","
<< linear_time_report.count() << ","
<< monotone_time_report.count() << ","
<< lloyd_time_report.count() << ","
<< wilber_time.count() << endl;
}
omp_unset_lock(&lock);
}
}
return 0;
}
int main(int argc, char* argv[]) {
std::unique_ptr<input_generator> generator(nullptr);
std::string outfilename;
if (argc > 1) {
if (argv[1] == "uniform") {
generator = std::move(std::unique_ptr<input_generator>(new input_generator_uniform()));
outfilename = datafile_name;
} else if (argv[1] == "gauss-mixture") {
generator = std::move(std::unique_ptr<input_generator>(new input_generator_gauss_mixture()));
outfilename = "timings_gauss.csv";
}
}
if (generator == nullptr) {
generator = std::unique_ptr<input_generator>(new input_generator_uniform());
}
run(generator, datafile_name);
}