Project for the course Natural Language Processing 1 @ University of Amsterdam
Davide Belli, Gabriele Cesa, Linda Petrini
python main.py --cuda --epochs 20
See experiment_final.sh for more examples
- '--data' default='./data/dataset/preprocessed/' 'location of the data corpus'
- '--model' default='LSTM'
- RNN_TANH
- RNN_RELU
- LSTM
- GRU
- LSTM_BIDIR
- LSTM_REV
- RAN
- RAN_BIDIR
- CNN
- '--emsize' default=300, 'size of word embeddings'
- '--nhid' default=200, 'number of hidden units per layer'
- '--nlayers' default=2, 'number of layers'
- '--nreduced' default=30, 'number of units in the reduced layer'
- '--lr', default=0.01, 'initial learning rate'
- '--lamb', default=0.1, 'lambda for L2 regularization (weight decay)'
- '--lrdecay', default=0.0, 'learning rate decay parameter for Adagrad'
- '--clip', default=0.25, 'gradient clipping'
- '--epochs' default=40, 'upper epoch limit'
- '--batch_size' default=20, 'batch size'
- '--bptt' default=35, 'sequence length'
- '--dropout', default=0.5, 'dropout applied to layers (0 = no dropout)'
- '--seed' default=1111, 'random seed'
- '--log-interval' default=50, 'report interval'
- '--save' default='model.pt' 'path to save the final model'
- '--recallsave' default='model_recall.pt' 'path to save the final model'
- '--pause_value' default=0, 'not optimise embeddings for the first 5 epochs'
- '--initial' default=None, 'path to embedding file. If not set they are initialized randomly'
- '--tied' = 'tie the word embedding and softmax weights'
- '--plot' = 'plot confusion matrix'
- '--last' = 'backpropagate at the end of a tweet'
- '--pre' = 'use preprocessed data'
- '--pause' = 'not optimise embeddings for the first 5 epochs'
- '--cuda' = 'use CUDA'
- '--shuffle' = 'shuffle train data every epoch'