-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathinit.R
109 lines (87 loc) · 2.4 KB
/
init.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
library(shiny)
require(shinyBS)
require(shinydashboard)
require(shinyjs)
require(caret)
require(plyr)
require(dplyr)
require(tidyr)
require(Cairo)
require(raster)
require(gstat)
require(wesanderson)
require(nnet)
require(randomForest)
# car, foreach, methods, plyr, nlme, reshape2, stats, stats4, utils, grDevices
# Not all of these are required but shinyapps.io was crashing and
# importing one of these solved the issue
require(kernlab)
require(klaR)
require(vcd)
require(e1071)
require(gam)
require(ipred)
require(MASS)
require(ellipse)
require(mda)
require(mgcv)
require(mlbench)
require(party)
require(MLmetrics)
require(Cubist)
require(testthat)
data(meuse)
dmnds <- diamonds#[sample(1:nrow(diamonds),1e3),]
# leaf <- read.csv('/Users/davesteps/Desktop/kaggle_data/leaf/train.csv')
datasets <- list(
'iris'=iris,
'cars'=mtcars,
'meuse'=meuse,
'diamonds'=data.frame(dmnds),
'Boston'=Boston
# 'leaf'=leaf
# 'midwest'=data.frame(midwest),
# 'mpg'=data.frame(mpg),
# 'msleep'=data.frame(msleep),
# 'txhousing'=data.frame(txhousing)
)
tuneParams <- list(
'svmLinear'=data.frame(C=c(0.01,0.1,1)),
'svmPoly'= expand.grid(degree=1:3,scale=c(0.01,0.1),C=c(0.25,0.5,1)),
'nnet'=expand.grid(size=c(1,3,5),decay=c(0.01,0.1,1)),
'rf'=data.frame(mtry=c(2,3,4)),
'knn'=data.frame(k=c(1,3,5,7,9)),
'nb'=expand.grid(usekernel=c(T,F),adjust=c(0.01,0.1,1),fL=c(0.01,0.1,1)),
'glm'=NULL#data.frame()
)
mdls <- list('svmLinear'='svmLinear',
'svmPoly'='svmPoly',
'Neural Network'='nnet',
'randomForest'='rf',
'k-NN'='knn',
'Naive Bayes'='nb',
'GLM'='glm',
'GAM'='gam')
#multinom
mdli <- list(
'Regression'=c(T,T,T,T,T,F,T,F),
'Classification'=c(T,T,T,T,T,T,F,F)
)
reg.mdls <- mdls[mdli[['Regression']]]
cls.mdls <- mdls[mdli[['Classification']]]
#
pal <- c('#b2df8a','#33a02c','#ff7f00','#cab2d6','#b15928',
'#fdbf6f','#a6cee3','#fb9a99','#1f78b4','#e31a1c')
set.seed(3)
pal <- sample(pal,length(mdls),F)
names(pal) <- mdls
modelCSS <- function(item,col){
tags$style(HTML(paste0(".selectize-input [data-value=\"",item,"\"] {background: ",col," !important}")))
}
tableCSS <- function(model,col){
paste0('if (data[6] == "',model,'")
$("td", row).css("background", "',col,'");')
}
label.help <- function(label,id){
HTML(paste0(label,actionLink(id,label=NULL,icon=icon('question-circle'))))
}