-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcal.py
38 lines (23 loc) · 951 Bytes
/
cal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os
import cv2
import numpy as np
path = './results/gt/'
files = os.listdir(path)
error = 0
count = 0
for file in files:
pt = file.split('_')
disp_targets = cv2.imread(path + file,cv2.IMREAD_GRAYSCALE)
predicted_map = cv2.imread('./results/nyu_post/' + pt[1] + '_10.png', cv2.IMREAD_GRAYSCALE)
if disp_targets.shape == predicted_map.shape:
valid_gt_pixels = (disp_targets != 0).astype('float')
masked_prediction_valid = predicted_map * valid_gt_pixels
num_valid_gt_pixels = valid_gt_pixels.sum()
# NOTE: Use 3-pixel error metric for now.
num_error_pixels = (np.abs(masked_prediction_valid - disp_targets) > 3).sum()
error_id = num_error_pixels / num_valid_gt_pixels
error += error_id
error_str = ('%06d') % int(pt[1]) + '_10' + '\t' + ('%f') % error_id
print(error_str)
count += 1
print("Mean Error: ", error / count)